×

Positive solutions of an initial value problem for nonlinear fractional differential equations. (English) Zbl 1242.35215

Summary: We investigate the existence and multiplicity of positive solutions for the nonlinear fractional differential equation initial value problem \(D^\alpha_{0+} u(t) + D^\beta_{0+} u(t) = f(t, u(t)), u(0) = 0\), \(0 < t < 1\), where \(0 < \beta < \alpha < 1\), \(D^\alpha_{0+}\) is the standard Riemann-Liouville differentiation and \(f : [0, 1] \times [0, \infty) \rightarrow [0, \infty)\) is continuous. By using some fixed-point results on cones, some existence and multiplicity results of positive solutions are obtained.

MSC:

35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. P. Agarwal, D. O’Regan Donal, and S. Stan\vek, “Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 371, no. 1, pp. 57-68, 2010. · Zbl 1206.34009 · doi:10.1016/j.jmaa.2010.04.034
[2] K. Balachandran, S. Kiruthika, and J. J. Trujillo, “Remark on the existence results for fractional impulsive integrodifferential equations in Banach spaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2244-2247, 2012. · Zbl 1256.34065 · doi:10.1016/j.cnsns.2011.10.009
[3] F. Chen, J. J. Nieto, and Y. Zhou, “Global attractivity for nonlinear fractional differential equations,” Nonlinear Analysis. Real World Applications, vol. 13, no. 1, pp. 287-298, 2012. · Zbl 1238.34011 · doi:10.1016/j.nonrwa.2011.07.034
[4] D. B\ualeanu, R. P. Agarwal, O. G. Mustafa, and M. Co\csulschi, “Asymptotic integration of some nonlinear differential equations with fractional time derivative,” Journal of Physics A, vol. 44, no. 5, Article ID 055203, 2011. · Zbl 1238.26008 · doi:10.1088/1751-8113/44/5/055203
[5] D. B\ualeanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos, World Scientific, 2012. · Zbl 1248.26011
[6] A. A. Kilbas, O. I. Marichev, and S. G. Samko, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0818.26003
[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, 2006. · Zbl 1092.45003
[8] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[9] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[10] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), vol. 378 of CISM Courses and Lectures, pp. 223-276, Springer, Vienna, Austria, 1997. · Zbl 0916.34011
[11] R. Gorenflo and F. Mainardi, “Fractional relaxation of distributed order,” in Complexus Mundi, pp. 33-42, World Scientific, Hackensack, NJ, USA, 2006. · Zbl 1167.26303 · doi:10.1142/9789812774217_0003
[12] F. Mainardi, A. Mura, G. Pagnini, and R. Gorenflo, “Sub-diffusion equations of fractional order and their fundamental solutions,” in Proceedings of the International Symposium on Mathematical Methods in Engineering, J. A. Tenreiro-Machado and D. Baleanu, Eds., pp. 23-55, Springer, Ankara, Turkey, 2006. · Zbl 1135.35004
[13] F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 4, no. 2, pp. 153-192, 2001. · Zbl 1054.35156
[14] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, and V. Yu. Gonchar, “Distributed order time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 6, no. 3, pp. 259-279, 2003. · Zbl 1089.60046
[15] A. Kochubei, “Distributed order calculus and equations of ultraslow diffusion,” Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 252-281, 2008. · Zbl 1149.26014 · doi:10.1016/j.jmaa.2007.08.024
[16] K. S. Miller, “Fractional differential equations,” Journal of Fractional Calculus, vol. 3, pp. 49-57, 1993. · Zbl 0789.26002
[17] V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511-522, 2004. · Zbl 1058.34002 · doi:10.1016/j.jmaa.2004.01.013
[18] S. Q. Zhang, “The existence of a positive solution for a nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 252, no. 2, pp. 804-812, 2000. · Zbl 0972.34004 · doi:10.1006/jmaa.2000.7123
[19] S. Q. Zhang, “Existence of positive solution for some class of nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 1, pp. 136-148, 2003. · Zbl 1026.34008 · doi:10.1016/S0022-247X(02)00583-8
[20] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495-505, 2005. · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[21] M. Stojanović, “Existence-uniqueness result for a nonlinear n-term fractional equation,” Journal of Mathematical Analysis and Applications, vol. 353, no. 1, pp. 244-255, 2009. · Zbl 1195.34014 · doi:10.1016/j.jmaa.2008.11.056
[22] M. A. Krasnoselski, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, 1964.
[23] R. W. Leggett and L. R. Williams, “Multiple positive fixed points of nonlinear operators on ordered Banach spaces,” Indiana University Mathematics Journal, vol. 28, no. 4, pp. 673-688, 1979. · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.