×

Upper bounds for singular perturbation problems involving gradient fields. (English) Zbl 1241.49011

Summary: We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy \[ E_\varepsilon(v)=\varepsilon\int_\Omega |\nabla^2v|^2\,dx+\varepsilon^{-1}\int_\Omega (1-|\nabla v|^2)^2\,dx \] over \(v\in H^2(\Omega)\), where \(\varepsilon>0\) is a small parameter. Given \(v\in W^{1,\infty}(\Omega)\) such that \(\nabla v\in\text{BV}\) and \(|\nabla v| =1\) a.e., we construct a family \(\{v_\varepsilon\}\) satisfying \(v_\varepsilon\to v\) in \(W^{1,p}(\Omega)\) and \[ E_\varepsilon(v_\varepsilon)\to \frac 13 \int_{J_{\nabla v}}|\nabla^+v-\nabla^-v|^3\,d\mathcal H^{N-1} \] as \(\varepsilon\) goes to 0.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
35B25 Singular perturbations in context of PDEs
35J20 Variational methods for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 , 327-355 (1999) · Zbl 0960.49013 · doi:10.1007/s005260050144
[2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Dis- continuity Problems. Oxford Math. Monographs, Oxford Univ. Press, New York (2000) · Zbl 0957.49001
[3] Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 , 1-16 (1987)
[4] Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 , 1-17 (1999) · Zbl 0923.49008 · doi:10.1017/S0308210500027438
[5] Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturba- tion. Preprint · Zbl 1186.49004 · doi:10.1007/s00208-006-0070-2
[6] De Lellis, C.: An example in the gradient theory of phase transitions. ESAIM Control Optim. Calc. Var. 7 , 285-289 (2002) · Zbl 1037.49010 · doi:10.1051/cocv:2002012
[7] DeSimone, A., Müller, S., Kohn, R. V., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131 , 833-844 (2001) · Zbl 0986.49009 · doi:10.1017/S030821050000113X
[8] Ercolani, N. M., Indik, R., Newell, A. C., Passot, T.: The geometry of the phase diffusion equation. J. Nonlinear Sci. 10 , 223-274 (2000) · Zbl 0981.76087 · doi:10.1007/s003329910010
[9] Evans, L. C.: Partial Differential Equations. Grad. Stud. Math. 19, Amer. Math. Soc. (1998) · Zbl 0902.35002
[10] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Stud. Adv. Math., CRC Press, Boca Raton, FL (1992) · Zbl 0804.28001
[11] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Elliptic Type. 2nd ed., Springer, Berlin (1983) · Zbl 0562.35001
[12] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80, Birkhäuser, Basel (1984) · Zbl 0545.49018
[13] Jin, W., Kohn, R. V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 , 355- 390 (2000) · Zbl 0973.49009 · doi:10.1007/s003329910014
[14] Poliakovsky, A.: A method for establishing upper bounds for singular perturbation problems. C. R. Math. Acad. Sci. Paris 341 , 97-102 (2005) · Zbl 1068.49009 · doi:10.1016/j.crma.2005.06.009
[15] Volpert, A. I., Hudjaev, S. I.: Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Nijhoff, Dordrecht (1985) · Zbl 0564.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.