×

Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere. (English) Zbl 1239.76057

Summary: A time-fractional central symmetric diffusion-wave equation is investigated in a sphere. Two types of Neumann boundary condition are considered: the mathematical condition with the prescribed boundary value of the normal derivative and the physical condition with the prescribed boundary value of the matter flux. Several examples of problems are solved using the Laplace integral transform with respect to time and the finite sine-Fourier transform of the special type with respect to the spatial coordinate. Numerical results are illustrated graphically.

MSC:

76R50 Diffusion
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Petrov, N.; Brankov, G., Modern Problems of Thermodynamics (1986), Mir: Mir Moscow, (in Russian)
[2] Tamma, K. K.; Zhou, X., Macroscale and microscale thermal transport and thermomechanical interactions: some noteworthy perspectives, J. Thermal Stresses, 21, 405-449 (1998)
[3] Chandrasekharaiah, D. S., Hyperbolic thermoelasticity: a review of recent literature, Appl. Mech. Rev., 51, 705-729 (1998)
[4] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[5] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37, R161-R208 (2004) · Zbl 1075.82018
[6] Povstenko, Y. Z., Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 28, 83-102 (2005)
[7] Povstenko, Y. Z., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr. T, 136, 014017 (2009), 6 p.
[8] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P., Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam., 29, 129-143 (2002) · Zbl 1009.82016
[9] Nigmatullin, R. R., To the theoretical explanation of the “universal response”, Phys. Status Solidi (B), 123, 739-745 (1984)
[10] Nigmatullin, R. R., The realization of the generalized transfer in a medium with fractal geometry, Phys. Status Solidi (B), 133, 425-430 (1986)
[11] Mainardi, F., Fractional diffusive waves in viscoelastic solids, (Wegner, J. L.; Norwood, F. R., IUTAM Symposium—Nonlinear Waves in Solids (1995), ASME/AMR: ASME/AMR Fairfield, NJ), 93-97
[12] Mainardi, F.; Paradisi, P., Fractional diffusive waves, J. Comput. Acoust., 9, 1417-1436 (2001) · Zbl 1360.76272
[13] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien), 291-348 · Zbl 0917.73004
[14] (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore) · Zbl 0998.26002
[15] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer: Springer New York
[16] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publishers, Inc.: Begell House Publishers, Inc. Connecticut
[17] Gafiychuk, V. V.; Datsko, B. Yo., Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems, Comput. Math. Appl., 59, 1101-1107 (2010) · Zbl 1189.35151
[18] Uchaikin, V. V., Method of Fractional Derivatives (2008), Arteshock: Arteshock Ulyanovsk, (in Russian)
[19] Wyss, W., The fractional diffusion equation, J. Math. Phys., 27, 2782-2785 (1986) · Zbl 0632.35031
[20] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 134-144 (1989) · Zbl 0692.45004
[21] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 23-28 (1996) · Zbl 0879.35036
[22] Lenzi, E. K.; Mendes, R. S.; Gonçalves, G.; Lenzi, M. K.; da Silva, L. R., Fractional diffusion equation and Green function approach: exact solutions, Physica A, 360, 215-226 (2006)
[23] Povstenko, Y., Time-fractional radial diffusion in a sphere, Nonlinear Dynam., 53, 55-65 (2008) · Zbl 1170.76357
[24] Lenzi, E. K.; Lenzi, M. K.; Rossato, R.; Evangelista, L. R.; da Silva, L. R., Results for a fractional diffusion equation with a nonlocal term in spherical symmetry, Phys. Lett. A, 372, 6121-6124 (2008) · Zbl 1225.34010
[25] Lucena, L. S.; da Silva, L. R.; Evangelista, L. R.; Lenzi, M. K.; Rossato, R.; Lenzi, E. K., Solutions for a fractional diffusion equation with spherical symmetry using Green function approach, Chem. Phys., 344, 90-94 (2008) · Zbl 1225.34010
[26] Povstenko, Y. Z., Fundamental solution to three-dimensional diffusion-wave equation and associated diffusive stresses, Chaos Solitons Fractals, 36, 961-972 (2008) · Zbl 1131.74022
[27] Povstenko, Y., Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity, Quart. J. Mech. Appl. Math., 61, 523-547 (2008) · Zbl 1153.74012
[28] Özdemir, N.; Karadeniz, D., Fractional diffusion-wave problem in cylindrical coordinates, Phys. Lett. A, 372, 5968-5972 (2008) · Zbl 1223.26012
[29] Lenzi, E. K.; da Silva, L. R.; Silva, A. T.; Evangelista, L. R.; Lenci, M. K., Some results for a fractional diffusion equation with radial symmetry in a confined region, Physica A, 388, 806-810 (2009)
[30] Jiang, X.; Xu, M., The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems, Physica A, 389, 3368-3374 (2010)
[31] Qi, H.; Liu, J., Time-fractional radial diffusion in hollow geometry, Meccanica, 45, 577-583 (2010) · Zbl 1258.35120
[32] Agrawal, O. P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29, 145-155 (2002) · Zbl 1009.65085
[33] Lykov, A. V., Theory of Heat Conduction (1967), Vysshaya Shkola: Vysshaya Shkola Moscow, (in Russian)
[34] Lenzi, E. K.; Ribeiro, H. V.; Martins, J.; Lenzi, M. K.; Lenzi, G. G.; Sphecchia, S., Non-Markovian diffusion equation and diffusion in a porous catalyst, Chem. Eng. J., 172, 1083-1087 (2011)
[35] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[36] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien), 223-276 · Zbl 1438.26010
[37] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions, vol. 3 (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0064.06302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.