×

A new method for Riccati differential equations based on reproducing kernel and quasilinearization methods. (English) Zbl 1237.65090

Summary: We introduce a new method for solving Riccati differential equations, which is based on reproducing kernel method and quasilinearization technique. The quasilinearization technique is used to reduce the Riccati differential equation to a sequence of linear problems. The resulting sets of differential equations are treated by using reproducing kernel method. The solutions of Riccati differential equations obtained using many existing methods give good approximations only in the neighborhood of the initial position. However, the solutions obtained using the present method give good approximations in a larger interval, rather than a local vicinity of the initial position. Numerical results compared with other methods show that the method is simple and effective.

MSC:

65L99 Numerical methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] W. T. Reid, Riccati Differential Equations, Academic Press, New York, NY, USA, 1972. · Zbl 0387.05027
[2] J. F. Carinena, G. Marmo, A. M. Perelomov, and M. F. Z. Rañada, “Related operators and exact solutions of Schrödinger equations,” International Journal of Modern Physics A, vol. 13, no. 28, pp. 4913-4929, 1998. · Zbl 0927.34065 · doi:10.1142/S0217751X98002298
[3] M. R. Scott, Invariant Imbedding and Its Applications to Ordinary Differential Equations: an Introduction, Addison-Wesley, London, UK, 1973. · Zbl 0271.34001
[4] M. A. El-Tawil, A. A. Bahnasawi, and A. Abdel-Naby, “Solving Riccati differential equation using Adomian’s decomposition method,” Applied Mathematics and Computation, vol. 157, no. 2, pp. 503-514, 2004. · Zbl 1054.65071 · doi:10.1016/j.amc.2003.08.049
[5] S. Abbasbandy, “Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 485-490, 2006. · Zbl 1088.65063 · doi:10.1016/j.amc.2005.02.014
[6] S. Abbasbandy, “A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 59-63, 2007. · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012
[7] S. Abbasbandy, “Iterated He’s homotopy perturbation method for quadratic Riccati differential equation,” Applied Mathematics and Computation, vol. 175, no. 1, pp. 581-589, 2006. · Zbl 1089.65072 · doi:10.1016/j.amc.2005.07.035
[8] M. Lakestani and M. Dehghan, “Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions,” Computer Physics Communications, vol. 181, no. 5, pp. 957-966, 2010. · Zbl 1205.65206 · doi:10.1016/j.cpc.2010.01.008
[9] F. Z. Geng, Y. Z. Lin, and M. G. Cui, “A piecewise variational iteration method for Riccati differential equations,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2518-2522, 2009. · Zbl 1189.65164 · doi:10.1016/j.camwa.2009.03.063
[10] B. Q. Tang and X. F. Li, “A new method for determining the solution of Riccati differential equations,” Applied Mathematics and Computation, vol. 194, no. 2, pp. 431-440, 2007. · Zbl 1193.65116 · doi:10.1016/j.amc.2007.04.061
[11] A. Ghorbani and S. Momani, “An effective variational iteration algorithm for solving Riccati differential equations,” Applied Mathematics Letters, vol. 23, no. 8, pp. 922-927, 2010. · Zbl 1192.65095 · doi:10.1016/j.aml.2010.04.012
[12] S. Momani and N. Shawagfeh, “Decomposition method for solving fractional Riccati differential equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1083-1092, 2006. · Zbl 1107.65121 · doi:10.1016/j.amc.2006.05.008
[13] Z. Odibat and S. Momani, “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 167-174, 2008. · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041
[14] S. H. Hosseinnia, A. Ranjbar, and S. Momani, “Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3138-3149, 2008. · Zbl 1165.65375 · doi:10.1016/j.camwa.2008.07.002
[15] F. Mohammadi and M. M. Hosseini, “A comparative study of numerical methods for solving quadratic Riccati differential equations,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 156-164, 2011. · Zbl 1210.65131 · doi:10.1016/j.jfranklin.2010.10.011
[16] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc., New York, NY, USA, 2009. · Zbl 1165.65300
[17] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic Publishers, Boston, Mass, USA, 2004. · Zbl 1145.62002
[18] F. Z. Geng, “New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 165-172, 2009. · Zbl 1205.65216 · doi:10.1016/j.cam.2009.07.007
[19] F. Z. Geng, “Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method,” Applied Mathematics and Computation, vol. 215, no. 6, pp. 2095-2102, 2009. · Zbl 1178.65085 · doi:10.1016/j.amc.2009.08.002
[20] F. Z. Geng and M. Cui, “Solving a nonlinear system of second order boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1167-1181, 2007. · Zbl 1113.34009 · doi:10.1016/j.jmaa.2006.05.011
[21] H. M. Yao and Y. Z. Lin, “Solving singular boundary-value problems of higher even-order,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 703-713, 2009. · Zbl 1181.65108 · doi:10.1016/j.cam.2008.02.010
[22] C. L. Li and M. G. Cui, “How to solve the equation AuBu+Cu=f,” Applied Mathematics and Computation, vol. 133, no. 2-3, pp. 643-653, 2002. · Zbl 1051.47009 · doi:10.1016/S0096-3003(01)00264-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.