×

Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling. (English) Zbl 1236.34072

Summary: Recently introduced modified function projective synchronization (MFPS) in which chaotic systems synchronize up to a scaling function matrix has important applications in secure communications. We design coupling function for unidirectional coupling in identical and mismatched hyperchaotic oscillators to realize MFPS through Open-Plus-Closed-Loop (OPCL) coupling method. The arbitrary scaling function matrix elements are properly chosen such that we can produce function projective synchronization, synchronization, anti-synchronization and amplitude death on desired states of the response system simultaneously. Numerical simulations on identical hyperchaotic Rossler and mismatched hyperchaotic Lu system are presented to verify the effectiveness of the proposed scheme. A secure communication scheme based on MFPS is also presented.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garacia-Ojalvo, J.; Mirasso, C. R.; Pesquera, L.; Shore, K. A., Nature, 438, 343 (2005)
[2] Mohanty, P., Nature, 437, 325 (2005)
[3] Dana, S. K.; Roy, P. K.; Kurths, J., Complex Dynamics in Physiological Systems: From Heart to Brain (2009), Springer: Springer New York · Zbl 1170.92014
[4] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990)
[5] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phys. Rev. Lett., 76, 1804 (1996)
[6] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S., Phys. Rev. E, 51, 980 (1995)
[7] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phys. Rev. Lett., 78, 4193 (1997)
[8] Boccaletti, S.; Valladares, D. L., Phys. Rev. E, 62, 7497 (2000)
[9] Hramov, A. E.; Koronovskii, A. A., Chaos, 14, 603 (2004)
[10] Hramov, A. E.; Koronovskii, A. A., Europhys. Lett., 72, 6, 901 (2005)
[11] Mainieri, R.; Rehacek, J., Phys. Rev. Lett., 82, 304 (1999)
[12] Li, G. H., Chaos Solitons Fractals, 32, 1454 (2007)
[13] Li, G. H., Chaos Solitons Fractals, 32, 1786 (2007)
[14] Du, H.; Zeng, Q.; Wong, C., Phys. Lett. A, 372, 5402 (2008)
[15] Sudheer, K. S.; Sabir, M., Phys. Lett. A, 373, 1847 (2009)
[16] Aronson, D. G.; Ermentrout, G. B.; Kopell, N., Physica D, 41, 403 (1990)
[17] Du, H.; Zeng, Q.; Wong, C., Chaos Solitons Fractals, 42, 2399 (2009)
[18] Sudheer, K. S.; Sabir, M., Phys. Lett. A, 373, 3743 (2009)
[19] Grosu, I.; Padmanaban, E.; Roy, P. K.; Dana, S. K., Phys. Rev. Lett., 100, 234102 (2008)
[20] Grosu, I.; Roy, P. K.; Banerjee, Ranjib; Dana, S. K., Phys. Rev. E, 80, 016242 (2009)
[21] Rossler, O. E., Phys. Lett. A, 7, 155 (1979)
[22] Chen, A.; Lu, J.; Lu, J.; Yu, S., Physica A, 364, 103 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.