×

Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications. (English) Zbl 1234.11068

Tschinkel, Yuri (ed.) et al., Algebra, arithmetic, and geometry. In honor of Y. I. Manin on the occasion of his 70th birthday. Vol. II. Boston, MA: Birkhäuser (ISBN 978-0-8176-4746-9/hbk; 978-0-8176-4747-6/ebook). Progress in Mathematics 270, 1-21 (2009).
The paper under review extends the modularity lifting theorem of R. Taylor [Publ. Math., Inst. Hautes Étud. Sci. 108, 183–239 (2008; Zbl 1169.11021)], using the combined works of Chenevier, Clozel, Guerberoff, Labese, Shin and the author. This simplifies the potential modularity result [Theorem 1 of Ann. Math. (2) 171, No. 2, 779–813 (2010; Zbl 1263.11061)] and eliminates one of the unwanted hypothesis therein.
Let \(F\) be a CM field, \(F^+\) be its maximal real subfield and \(\Gamma_{F^+}=\text{Gal}(\bar{F^+}/F^+)\) its absolute Galois group. Let \(E/F^+\) be an elliptic curve without CM. The author uses his potential modularity result for the Galois representation \(\rho_{E,\ell}^n=\text{Sym}^{n-1}\rho_{E,\ell}: \Gamma_{F^+} \rightarrow \text{GL}(n,\mathbb Q_\ell)\). Then for even \(n\), the potential modularity of \(\rho_{E,\ell}^n\) in turn is used to prove that \(L(s,\rho_{E,\ell}^n)\) is potentially automorphic for any even \(n\), provided that \(j(E)\) is non-integral.
Using a tensor product trick developed in the current article, the author converts an odd dimensional representation to an even dimensional representation, so that he can apply the results alluded to above for even \(n\). The author explains how to choose the auxiliary representation to be tensored with correctly, so as to recover the relevant automorphy result that reads as follows:
Theorem. Suppose \(E\) and \(E^\prime\) are elliptic curves over \(F^+\), and assume \(E\) and \(E^\prime\) do not become isogenous over an abelian extension of \(F^+\). Let \(m\) and \(m^\prime\) be positive integers. Then the \(L\)-function \(L(s, \rho_{E,\ell}^m\otimes\rho_{E^\prime,\ell}^{m^\prime})\) is invertible and satisfies the expected functional equation.
As a corollary to this result, the author obtains an affirmative answer to a question of Mazur and Katz:
Theorem: Suppose \(E\) and \(E^\prime\) are elliptic curves over \(F^+\), and assume \(E\) and \(E^\prime\) do not become isogenous over an abelian extension of \(F^+\). For any prime \(v\) of \(F^+\) where \(E\) and \(E^\prime\) both have good reduction, set \[ |E(k_v)|=\left(1-q_v^{\frac{1}{2}}e^{i\phi_v}\right)\left( (1-q_v^{\frac{1}{2}}e^{-i\phi_v}\right) \]
\[ |E^{\prime}(k_v)|=\left(1-q_v^{\frac{1}{2}}e^{i\psi_v}\right)\left( (1-q_v^{\frac{1}{2}}e^{-i\psi_v}\right) \] where \(k_v\) is the residue field at \(v\), \(q_v=|k_v|\) and \(\phi_v,\psi_v\in [0,\pi]\).
Then the pairs \((\phi_v,\psi_v) \in [0,\pi]\times [0,\pi]\) are uniformly distributed with respect to the measure \[ \frac{4}{\pi^2}\sin^2\phi\sin^2\psi\,d\phi d\psi. \]
For the entire collection see [Zbl 1185.00042].

MSC:

11F80 Galois representations
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11G05 Elliptic curves over global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. Arthur, L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies 120 (1989). · Zbl 0682.10022
[2] Clozel, L.; Clozel, L.; Milne, JS, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic Forms, Shimura Varieties, and L-functions, 77-160 (1990), New York: Academic Press, New York
[3] Clozel, L., Représentations Galoisiennes associées aux représentations automorphes autoduales de GL (n), Publ. Math. I.H.E.S., 73, 97-145 (1991) · Zbl 0739.11020
[4] Clozel, L., On the cohomology of Kottwitz’s arithmetic varieties, Duke Math. J., 72, 757-795 (1993) · Zbl 0974.11019 · doi:10.1215/S0012-7094-93-07229-8
[5] Clozel, L.; Harris, M.; Taylor, R., Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations, Publ. Math. I.H.E.S., 108, 1-181 (2008) · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1
[6] L. Clozel, J.-P. Labesse, Changement de base pour les représentations cohomologiques de certains groupes unitaires, in [L], 119-133.
[7] M. Harris, Construction of automorphic Galois representations, manuscript (2006); draft of article for Stabilisation de la formule des traces, variétés de Shimura, et applications arithmétiques, Book 3.
[8] M. Harris, N. Shepherd-Barron, R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Annals of Math. (in press). · Zbl 1263.11061
[9] M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, 151 (2001). · Zbl 1036.11027
[10] Kottwitz, R., On the λ-adic representations associated to some simple Shimura varieties, Invent. Math., 108, 653-665 (1992) · Zbl 0765.22011 · doi:10.1007/BF02100620
[11] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque, 257 (1999). · Zbl 1024.11034
[12] Serre, J-P, Abelian ℓ-adic representations and elliptic curves (1968), New York: Benjamin, New York · Zbl 0186.25701
[13] Shahidi, F., On certain L-functions, Am. J. Math., 103, 297-355 (1981) · Zbl 0467.12013 · doi:10.2307/2374219
[14] Taylor, R., Automorphy for some ℓ-adic lifts of automorphic mod ℓ Galois representations, II, Publ. Math. I.H.E.S., 108, 183-239 (2008) · Zbl 1169.11021
[15] Taylor, R., Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, 1, 1-19 (2002) · Zbl 1047.11051 · doi:10.1017/S1474748002000038
[16] Taylor, R.; Yoshida, T., Compatibility of local and global Langlands correspondences, J.A.M.S., 20, 467-493 (2007) · Zbl 1210.11118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.