×

Lifting \(D\)-modules from positive to zero characteristic. (Relèvement de \(D\)-modules de caractéristique positive en caractéristique nulle.) (English. French summary) Zbl 1233.13009

Summary: We study liftings or deformations of \(D\)-modules (\(D\) is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic \(D\)-modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given \(D\)-module in positive characteristic. At the end we compare the problems of deforming a \(D\)-module with the problem of deforming a representation of a naturally associated group scheme.

MSC:

13N10 Commutative rings of differential operators and their modules
12H05 Differential algebra
14L15 Group schemes
12H25 \(p\)-adic differential equations
14B12 Local deformation theory, Artin approximation, etc.
13D10 Deformations and infinitesimal methods in commutative ring theory
18B99 Special categories
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] S. Anantharaman -“Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1”, Mémoires de la SMF 33 (1973), p. 5-79. · Zbl 0286.14001
[2] M. Artin, A. Grothendieck & J.-L. Verdier -“Théorie des topos et cohomologie étale des schémas”, Lecture Notes in Math. 269, 270, 305 (1971).
[3] P. Berthelot -“D-modules arithmétiques. I. Opérateurs différentiels de niveau fini”, Ann. Sci. École Norm. Sup. 29 (1996), p. 185-272. · Zbl 0886.14004
[4] , “D-modules arithmétiques. II. Descente par Frobenius”, Mém. Soc. Math. Fr. (N.S.) 81 (2000). · Zbl 0948.14017
[5] , “Introduction à la théorie arithmétique des D-modules”, Astérisque 279 (2002), p. 1-80. · Zbl 1098.14010
[6] , “A note on Frobenius divided modules in mixed characteristics”, preprint arXiv:1003.2571.
[7] P. Berthelot & A. Ogus -Notes on crystalline cohomology, Princeton Univ. Press, 1978. · Zbl 0383.14010
[8] P. Deligne -“Le groupe fondamental de la droite projective moins trois points”, in Galois groups over Q (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer, 1989, p. 79-297. · Zbl 0742.14022
[9] , “Catégories tannakiennes”, in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser, 1990, p. 111-195. · Zbl 0727.14010
[10] M. Demazure & A. Grothendieck (eds.) -Schémas en groupes. I: Propriétés générales des schémas en groupes. Séminaire de Géométrie Al-gébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Math., vol. 151, Springer, 1970. · Zbl 0207.51401
[11] M. Demazure -“Schémas en groupes réductifs”, Bull. Soc. Math. France 93 (1965), p. 369-413. · Zbl 0163.27402
[12] M. Demazure & P. Gabriel -Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, 1970. · Zbl 0203.23401
[13] D. Gieseker -“Flat vector bundles and the fundamental group in non-zero characteristics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975), p. 1-31. · Zbl 0322.14009
[14] J. Giraud -Cohomologie non abélienne, Grundl. math. Wissensch., vol. 179, Springer, 1971. · Zbl 0135.02401
[15] W. M. Goldman & J. J. Millson -“The deformation theory of rep-resentations of fundamental groups of compact Kähler manifolds”, Publ. Math. I.H.É.S. 67 (1988), p. 43-96. · Zbl 0678.53059
[16] A. Grothendieck (ed.) -Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1), Lecture Notes in Math., vol. 224, Springer, 1971.
[17] , “Technique de descente et théorèmes d”éxistence en géométrie algébrique”, Séminaire Bourbaki: t. 12, n. 190, 1959/60; t. 12, n. 195, 1959/60; t. 13, n. 212, 1960/61; t. 13, n. 221, 1960/61; t. 14, n. 232, 1961/62; t. 14, n. 236, 1961/62.
[18] A. Grothendieck & J. Dieudonné -“Éléments de géométrie al-gébrique”, Publ. Math. IHÉS 8, 11 (1961); 17 (1963); 20 (1964); 24 (1965); 28 (1966); 32 (1967).
[19] L. Illusie -“Grothendieck”s existence theorem in formal geometry”, in Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., 2005, p. 179-233. · Zbl 1085.14001
[20] J. C. Jantzen -Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press Inc., 1987. · Zbl 0654.20039
[21] N. M. Katz -“Nilpotent connections and the monodromy theorem: Ap-plications of a result of Turrittin”, Publ. Math. I.H.É.S. 39 (1970), p. 175-232. · Zbl 0221.14007
[22] S. Mac Lane -“Categorical algebra”, Bull. Amer. Math. Soc. 71 (1965), p. 40-106. · Zbl 0161.01601
[23] , Categories for the working mathematician, second ed., Graduate Texts in Math., vol. 5, Springer, 1998. · Zbl 0906.18001
[24] M. Manetti -“Deformation theory via differential graded Lie alge-bras”, in Algebraic Geometry Seminars, 1998-1999 (Italian) (Pisa), Scuola Norm. Sup., 1999, p. 21-48.
[25] H. Matsumura -Commutative ring theory, second ed., Cambridge Stud-ies in Advanced Math., vol. 8, Cambridge Univ. Press, 1989. · Zbl 0666.13002
[26] B. H. Matzat -“Integral p-adic differential modules”, in Groupes de Galois arithmétiques et différentiels, Sémin. Congr., vol. 13, Soc. Math. France, 2006, p. 263-292. · Zbl 1158.13009
[27] B. H. Matzat & M. van der Put -“Iterative differential equations and the Abhyankar conjecture”, J. reine angew. Math. 557 (2003), p. 1-52. · Zbl 1040.12010
[28] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[29] B. Mazur -“Deforming Galois representations”, in Galois groups over Q (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer, 1989, p. 385-437. · Zbl 0714.11076
[30] J. S. Milne -Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. · Zbl 0433.14012
[31] D. Mumford -Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Funda-mental Research, Bombay, 1970. · Zbl 0223.14022
[32] M. V. Nori -“On the representations of the fundamental group”, Com-positio Math. 33 (1976), p. 29-41. · Zbl 0337.14016
[33] J. P. Pridham -“Deformation theory and the fundamental group”, Ph.D. Thesis, University of Cambridge, 2004.
[34] , “Deformations via simplicial deformation complexes”, preprint arXiv:math/0311168.
[35] M. van der Put & M. F. Singer -Galois theory of linear differential equations, Grund. Math. Wiss., vol. 328, Springer, 2003. · Zbl 1036.12008
[36] N. Saavedra Rivano -Catégories tannakiennes, Lecture Notes in Math., vol. 265, Springer, 1972. · Zbl 0241.14008
[37] J. P. P. dos Santos -“Fundamental group schemes for stratified sheaves”, J. Algebra 317 (2007), p. 691-713. · Zbl 1130.14032
[38] , “The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach”, J. reine angew. Math. 637 (2009), p. 63-98. · Zbl 1242.12005
[39] M. Schlessinger -“Functors of Artin rings”, Trans. Amer. Math. Soc. 130 (1968), p. 208-222. · Zbl 0167.49503
[40] C. A. Weibel -An introduction to homological algebra, Cambridge Stud-ies in Advanced Math., vol. 38, Cambridge Univ. Press, 1994. · Zbl 0797.18001
[41] O. Zariski -“Theory and applications of holomorphic functions on al-gebraic varieties over arbitrary ground fields”, in Collected papers of O. Zariski, vol. II, MIT Press, 1973.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.