×

Order reduction method for linear difference equations. (English) Zbl 1232.39003

Authors’ abstract: An order reduction method for homogeneous linear difference equations, analogous to the standard order reduction of linear differential equations, is introduced, and this method is applied to study the Nevanlinna growth relations between meromorphic coefficients and solutions of linear difference equations.

MSC:

39A06 Linear difference equations
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
39A12 Discrete version of topics in analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. J. Ablowitz, R. Halburd, and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), no. 3, 889 – 905. · Zbl 0956.39003 · doi:10.1088/0951-7715/13/3/321
[2] Zong-Xuan Chen and Kwang Ho Shon, The growth of solutions of differential equations with coefficients of small growth in the disc, J. Math. Anal. Appl. 297 (2004), no. 1, 285 – 304. · Zbl 1062.34097 · doi:10.1016/j.jmaa.2004.05.007
[3] Yik-Man Chiang and Shao-Ji Feng, On the Nevanlinna characteristic of \?(\?+\?) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105 – 129. · Zbl 1152.30024 · doi:10.1007/s11139-007-9101-1
[4] Yik-Man Chiang and Shao-Ji Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3767 – 3791. · Zbl 1172.30009
[5] Yik-Man Chiang and Simon N. M. Ruijsenaars, On the Nevanlinna order of meromorphic solutions to linear analytic difference equations, Stud. Appl. Math. 116 (2006), no. 3, 257 – 287. · Zbl 1145.39300 · doi:10.1111/j.1467-9590.2006.00343.x
[6] Anatoly A. Goldberg and Iossif V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, vol. 236, American Mathematical Society, Providence, RI, 2008. Translated from the 1970 Russian original by Mikhail Ostrovskii; With an appendix by Alexandre Eremenko and James K. Langley. · Zbl 1152.30026
[7] Gary G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415 – 429. · Zbl 0634.34004
[8] Gary G. Gundersen, Enid M. Steinbart, and Shupei Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1225 – 1247. · Zbl 0893.34003
[9] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477 – 487. · Zbl 1085.30026 · doi:10.1016/j.jmaa.2005.04.010
[10] R. G. Halburd, R. J. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, preprint (arXiv:0903.3236), 2009. · Zbl 1298.32012
[11] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. · Zbl 0115.06203
[12] Janne Heittokangas, Risto Korhonen, and Jouni Rättyä, Linear differential equations with coefficients in weighted Bergman and Hardy spaces, Trans. Amer. Math. Soc. 360 (2008), no. 2, 1035 – 1055. · Zbl 1133.34045
[13] K. Ishizaki and N. Yanagihara, Wiman-Valiron method for difference equations, Nagoya Math. J. 175 (2004), 75 – 102. · Zbl 1070.39002
[14] Liisa Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385 – 405. · Zbl 0934.34076
[15] Ilpo Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. · Zbl 0784.30002
[16] C. Praagman, Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems, J. Reine Angew. Math. 369 (1986), 101 – 109. · Zbl 0586.30024 · doi:10.1515/crll.1986.369.101
[17] S. N. M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), no. 2, 1069 – 1146. · Zbl 0877.39002 · doi:10.1063/1.531809
[18] J. M. Whittaker, Interpolatory function theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 33, Stechert-Hafner, Inc., New York, 1964. · Zbl 0012.15503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.