×

On smooth traveling waves of an integrable two-component Camassa-Holm shallow water system. (English) Zbl 1231.76063

Summary: We give a simple proof of existence for the smooth traveling waves with a single crest profile of maximum amplitude of a recently derived integrable two-component shallow water system.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bressan, A.; Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183, 215-239 (2007) · Zbl 1105.76013
[2] Camassa, R.; Holm, D. D., An integrable shallow wave equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362 (2000) · Zbl 0944.35062
[4] Constantin, A., The trajectories of particles in Stokes waves, Invent. Math., 166, 523-535 (2006) · Zbl 1108.76013
[5] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243 (1998) · Zbl 0923.76025
[6] Constantin, A.; Escher, J., Particle trajectories in solitary water waves, Bull. Am. Math. Soc., 44, 423-431 (2007) · Zbl 1126.76012
[7] Constantin, A.; Gerdjikov, V.; Ivanov, R., Inverse scattering transform for the Camassa-Holm equation, Inverse Probl., 22, 2197-2207 (2006) · Zbl 1105.37044
[8] Constantin, A.; Johnson, R. S., Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 40, 175-211 (2008) · Zbl 1135.76007
[9] Constantin, A.; Ivanov, R., On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372, 7129-7132 (2008) · Zbl 1227.76016
[10] Constantin, A.; Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78, 787-804 (2003) · Zbl 1037.37032
[11] Constantin, A.; Lannes, D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 192, 165-186 (2009) · Zbl 1169.76010
[12] Constantin, A.; McKean, H. P., A shallow water equation on the circle, Commun. Pure Appl. Math., 52, 949-982 (1999) · Zbl 0940.35177
[13] Constantin, A.; Strauss, W., Stability of peakons, Commun. Pure Appl. Math., 53, 603-610 (2000) · Zbl 1049.35149
[14] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0661.35001
[15] Escher, J.; Lechtenfeld, O.; Yin, Z., Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discr. Cont. Dyn. Syst., 19, 493-513 (2007) · Zbl 1149.35307
[16] D.D. Holm, L.O. Naraigh, C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E 79 (2009) (Art. No: 016601).; D.D. Holm, L.O. Naraigh, C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E 79 (2009) (Art. No: 016601).
[17] Holm, D. D.; Tronci, C., Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions, Proc. Roy. Soc. Lond. A, 465, 457-476 (2009) · Zbl 1186.37090
[18] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455, 63-82 (2002) · Zbl 1037.76006
[19] Johnson, R. S., The Camassa-Holm equation for water waves moving over a shear flow, Fluid Dynam. Res., 33, 97-111 (2003) · Zbl 1032.76519
[20] Kolev, B., Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Philos. Trans. Roy. Soc. Lond. Ser. A, 365, 2333-2357 (2007) · Zbl 1152.37344
[21] Lakshmanan, M., Integrable Nonlinear Wave Equations and Possible Connections to Tsunami Dynamics in Tsunami and Nonlinear Waves (2007), Springer: Springer Berlin, pp. 31-49 · Zbl 1310.76044
[22] Misiolek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24, 203-208 (1998) · Zbl 0901.58022
[23] K. Monajer, A note on traveling wave solutions to the two component Camassa-Holm equation, J. Nonlinear Math. Phys. Available from <arXiv:0803.1847v1>; K. Monajer, A note on traveling wave solutions to the two component Camassa-Holm equation, J. Nonlinear Math. Phys. Available from <arXiv:0803.1847v1>
[24] Mustafa, O. G., Solitary waves for a generalized Camassa-Holm equation, Dynam. Const. Discr. Impuls. Syst. Ser. A, 14, 205-212 (2007) · Zbl 1130.34017
[25] Shabat, A. B.; Martinez Alonso, L., On the prolongation of a hierarchy of hydrodynamic chains, in New trends in integrability and partial solvability (2004), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht, pp. 263-280 · Zbl 1061.35099
[26] Toland, J. F., Stokes waves, Topol. Methods Nonlinear Anal., 7, 1-48 (1996) · Zbl 0897.35067
[27] Whitham, G. B., Linear and Nonlinear Waves (1980), Wiley: Wiley New York · Zbl 0373.76001
[28] Wintner, A., The infinities in the non-local existence problem of ordinary differential equations, Am. J. Math., 68, 173-178 (1946) · Zbl 0063.08290
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.