×

Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. (English) Zbl 1230.93047

Summary: In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by a first-order Taylor expansion. The virtual control is designed with nominal feedback and Neural Network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead of the nominal value. Under the proposed controller, the semiglobal uniform ultimate boundedness stability is guaranteed. The square and step responses are presented in the simulation studies to show the effectiveness of the proposed control approach.

MSC:

93C40 Adaptive control/observation systems
93C55 Discrete-time control/observation systems
92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0005-1098(01)00072-3 · Zbl 1112.93329 · doi:10.1016/S0005-1098(01)00072-3
[2] DOI: 10.1109/TNN.2010.2042611 · doi:10.1109/TNN.2010.2042611
[3] DOI: 10.1109/TSMCB.2009.2033808 · doi:10.1109/TSMCB.2009.2033808
[4] Du Y, Journal of Systems Engineering and Electronics 21 pp 868– (2010) · doi:10.3969/j.issn.1004-4132.2010.05.022
[5] Fiorentini, L. Serrani, A., Bolender, M., and Doman, D. (2008), ’Robust Nonlinear Sequential Loop Closure Control Design for an Air-breathing Hypersonic Vehicle Model’, inAmerican Control Conference, 2008, IEEE, pp. 3458–3463
[6] DOI: 10.2514/1.39210 · doi:10.2514/1.39210
[7] DOI: 10.1007/s11432-011-4190-2 · Zbl 1227.93064 · doi:10.1007/s11432-011-4190-2
[8] Ge, S. Hang, C., Lee, T., and Zhang, T. (2001),Stable Adaptive Neural Network Control, Norwell, MA: Kluwer · Zbl 1001.93002
[9] Gibson, T. Crespo, L., and Annaswamy, A. (2009), ’Adaptive Control of Hypersonic Vehicles in the Presence of Modelling Uncertainties’, inAmerican Control Conference, 2009, ACC’09, IEEE, pp. 3178–3183
[10] DOI: 10.1504/IJMIC.2010.035283 · doi:10.1504/IJMIC.2010.035283
[11] Ioannou P, Robust Adaptive Control (1996)
[12] DOI: 10.1109/37.165507 · doi:10.1109/37.165507
[13] DOI: 10.1002/rnc.1609 · Zbl 1213.93174 · doi:10.1002/rnc.1609
[14] Liu, Y. and Lu, Y. (2009), ’Nonlinear Adaptive Inversion Control with Neural Network Compensation for a Longitudinal Hypersonic Vehicle Model,’ inIEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009, Vol. 2, pp. 264–268
[15] Serrani, A. Zinnecker, A., Fiorentini, L., Bolender, M., and Doman, D. (2009), ’Integrated Adaptive Guidance and Control of Constrained Nonlinear Air-breathing Hypersonic Vehicle Models,’ inAmerican Control Conference, 2009, ACC’09, IEEE, pp. 3172–3177
[16] DOI: 10.2514/2.4580 · doi:10.2514/2.4580
[17] Wilcox, Z. MacKunis, W., Bhat, S., Lind, R., and Dixon, W. (2009), ’Robust Nonlinear Control of a Hypersonic Aircraft in the Presence of Aerothermoelastic Effects,’ inAmerican Control Conference, 2009, ACC’09, IEEE, pp. 2533–2538
[18] DOI: 10.2514/1.12596 · doi:10.2514/1.12596
[19] DOI: 10.1007/s11432-011-4189-8 · Zbl 1227.93062 · doi:10.1007/s11432-011-4189-8
[20] DOI: 10.1109/TNN.2008.2003290 · doi:10.1109/TNN.2008.2003290
[21] DOI: 10.1016/S0005-1098(00)00186-2 · Zbl 0990.93063 · doi:10.1016/S0005-1098(00)00186-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.