×

Stability analysis of distributed order fractional differential equations. (English) Zbl 1230.34007

Summary: We analyze the stability of three classes of distributed order fractional differential equations with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on the characteristic function and a new inertia concept of a matrix with respect to the density function.

MSC:

34A08 Fractional ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, Italy, 1969.
[2] M. Caputo, “Mean fractional-order-derivatives differential equations and filters,” Annali dell’Università di Ferrara. Nuova Serie. Sezione VII. Scienze Matematiche, vol. 41, pp. 73-84, 1995. · Zbl 0882.34007
[3] M. Caputo, “Distributed order differential equations modelling dielectric induction and diffusion,” Fractional Calculus & Applied Analysis, vol. 4, no. 4, pp. 421-442, 2001. · Zbl 1042.34028
[4] R. L. Bagley and P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations,” International Journal of Applied Mathematics, vol. I, no. 7, pp. 865-882, 2000. · Zbl 1100.34006
[5] R. L. Bagley and P. J. Torvik, “On the existence of the order domain and the solution of distributed order equations,” International Journal of Applied Mathematics, vol. II, no. 7, pp. 965-987, 2000. · Zbl 1100.34006
[6] K. Diethelm and N. J. Ford, “Numerical analysis for distributed-order differential equations,” Journal of Computational and Applied Mathematics, vol. 225, no. 1, pp. 96-104, 2009. · Zbl 1159.65103 · doi:10.1016/j.cam.2008.07.018
[7] A. Aghili and A. Ansari, “Solving partial fractional differential equations using the \Bbb LA-transform,” Asian-European Journal of Mathematics, vol. 3, no. 2, pp. 209-220, 2010, World Scientific Publishing. · Zbl 1195.26006 · doi:10.1142/S1793557110000143
[8] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,” Physical Review E, vol. 66, no. 4, article 046129, pp. 1-7, 2002. · doi:10.1103/PhysRevE.66.046129
[9] A. N. Kochubei, “Distributed order calculus and equations of ultraslow diffusion,” Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 252-281, 2008. · Zbl 1149.26014 · doi:10.1016/j.jmaa.2007.08.024
[10] F. Mainardi and G. Pagnini, “The role of the Fox-Wright functions in fractional subdiffusion of distributed order,” Journal of Computational and Applied Mathematics, vol. 207, no. 2, pp. 245-257, 2007. · Zbl 1120.35002 · doi:10.1016/j.cam.2006.10.014
[11] F. Mainardi, G. Pagnini, and R. K. Saxena, “Fox H functions in fractional diffusion,” Journal of Computational and Applied Mathematics, vol. 178, no. 1-2, pp. 321-331, 2005. · Zbl 1061.33012 · doi:10.1016/j.cam.2004.08.006
[12] S. Umarov and R. Gorenflo, “Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations,” Zeitschrift für Analysis und ihre Anwendungen, vol. 24, no. 3, pp. 449-466, 2005. · Zbl 1100.35132
[13] O. P. Agrawal, J. A. Tenreiro Machado, and J. Sabatier, “Introduction,” Nonlinear Dynamics, vol. 38, no. 1-2, pp. 1-2, 2004. · doi:10.1007/s11071-004-3743-y
[14] B. Bonilla, M. Rivero, L. Rodríguez-Germá, and J. J. Trujillo, “Fractional differential equations as alternative models to nonlinear differential equations,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 79-88, 2007. · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[15] P. L. Butzer and U. Westphal, An Introduction to Fractional Calculus, World Scientific, Singapore, Republic of Singapore, 2000. · Zbl 0987.26005
[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science Publishers, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[17] R. L. Magin, “Fractional calculus in bioengineering,” Critical Reviews in Biomedical Engineering, vol. 32, no. 1, pp. 1-104, 2004.
[18] T. Matsuzaki and M. Nakagawa, “A chaos neuron model with fractional differential equation,” Journal of the Physical Society of Japan, vol. 72, no. 10, pp. 2678-2684, 2003. · doi:10.1143/JPSJ.72.2678
[19] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2005. · Zbl 1083.37002
[20] W. Deng, “Smoothness and stability of the solutions for nonlinear fractional differential equations,” Nonlinear Analysis: TMA, vol. 72, no. 3-4, pp. 1768-1777, 2010. · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[21] W. Deng, C. Li, and J. Lü, “Stability analysis of linear fractional differential system with multiple time delays,” Nonlinear Dynamics, vol. 48, no. 4, pp. 409-416, 2007. · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[22] D. Matignon, “Stability results of fractional differential equations with applications to control processing,” in Proceedings of the IEEE-SMC International Association for Mathematics and Computers in Simulation (IMACS ’96), pp. 963-968, Lille,France, 1996.
[23] M. S. Tavazoei and M. Haeri, “A note on the stability of fractional order systems,” Mathematics and Computers in Simulation, vol. 79, no. 5, pp. 1566-1576, 2009. · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[24] B. N. Datta, “Stability and inertia,” Linear Algebra and its Applications, vol. 302/303, pp. 563-600, 1999. · Zbl 0972.15009 · doi:10.1016/S0024-3795(99)00213-X
[25] Z. M. Odibat, “Analytic study on linear systems of fractional differential equations,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1171-1183, 2010. · Zbl 1189.34017 · doi:10.1016/j.camwa.2009.06.035
[26] B. Xin, T. Chen, and Y. Liu, “Synchronization of chaotic fractional-order WINDMI systems via linear state error feedback control,” Mathematical Problems in Engineering, vol. 2010, Article ID 859685, 10 pages, 2010. · Zbl 1205.93054 · doi:10.1155/2010/859685
[27] I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[28] D. G. Duffy, Transform Methods for Solving Partial Differential Equations, CRC Press, 2nd edition, 2004. · Zbl 1073.35001
[29] A. V. Bobylev and C. Cercignani, “The inverse laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation,” Applied Mathematics Letters, vol. 15, no. 7, pp. 807-813, 2002. · Zbl 1025.44002 · doi:10.1016/S0893-9659(02)00046-0
[30] W. Horton, R. S. Weigel, and J. C. Sprott, “Chaos and the limits of predictability for the solar-wind-driven magnetosphere-ionosphere system,” Physics of Plasmas, vol. 8, no. 6, pp. 2946-2952, 2001. · doi:10.1063/1.1371522
[31] W. Horton and I. Doxas, “A low-dimensional dynamical model for the solar wind driven geotail-ionosphere system,” Journal of Geophysical Research A, vol. 103, no. A3, pp. 4561-4572, 1998.
[32] Y. Yu, H.-X. Li, S. Wang, and J. Yu, “Dynamic analysis of a fractional-order Lorenz chaotic system,” Chaos, Solitons and Fractals, vol. 42, no. 2, pp. 1181-1189, 2009. · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[33] H. S. Najafi and A. Refahi, “A new restarting method in the Lanczos algorithm for generalized eigenvalue problem,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 421-428, 2007. · Zbl 1116.65045 · doi:10.1016/j.amc.2006.06.079
[34] H. S. Najafi and A. Refahi, “FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B),” Applied Mathematics and Computation, vol. 188, no. 1, pp. 641-647, 2007. · Zbl 1193.65038 · doi:10.1016/j.amc.2007.03.004
[35] H. S. Najafi, A. Refahi, and M. Akbari, “Weighted FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B),” Applied Mathematics and Computation, vol. 192, no. 1, pp. 239-246, 2007. · Zbl 1193.65038 · doi:10.1016/j.amc.2007.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.