×

Dynamics of a discretized SIR epidemic model with pulse vaccination and time delay. (English) Zbl 1229.92068

Summary: We derive a discretized SIR epidemic model with pulse vaccination and time delay from the original continuous model. Sufficient conditions for global attractivity of an infection-free periodic solution and permanence of our model are obtained. Improving discretization, our results are corresponding to those in the original continuous model.

MSC:

92D30 Epidemiology
39A12 Discrete version of topics in analysis
39A23 Periodic solutions of difference equations
39A60 Applications of difference equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beretta, E.; Takeuchi, Y., Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33, 250-260 (1995) · Zbl 0811.92019
[2] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42, 931-947 (2000) · Zbl 0967.34070
[3] Ma, W.; Song, M.; Takeuchi, Y., Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17, 1141-1145 (2004) · Zbl 1071.34082
[4] Song, M.; Ma, W.; Takeuchi, Y., Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math., 201, 389-394 (2007) · Zbl 1117.34310
[5] McCluskey, C. C., Complete global stability for an SIR epidemic model with delay—distributed or discrete time delays, Nonlinear Anal. RWA, 11, 55-59 (2010) · Zbl 1185.37209
[6] Wei, H.; Jiang, Y.; Song, X.; Su, G. H.; Qiu, S. Z., Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay, J. Comput. Appl. Math., 229, 302-312 (2009) · Zbl 1162.92038
[7] Gao, S.; Teng, Z.; Xie, D., Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos Solitons Fractals, 40, 1004-1011 (2009) · Zbl 1197.34123
[8] Stone, L.; Shulgin, B.; Agur, Z., Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modelling, 31, 207-215 (2000) · Zbl 1043.92527
[9] Pang, G.; Chen, L., A delayed SIRS epidemic model with pulse vaccination, Chaos Solitons Fractals, 34, 1629-1635 (2007) · Zbl 1152.34379
[10] Meng, X.; Chen, L.; Wu, B., A delay SIR epidemic model with pulse vaccination and incubation times, Nonlinear Anal. RWA, 11, 88-98 (2010) · Zbl 1184.92044
[11] Wang, W., Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15, 423-428 (2002) · Zbl 1015.92033
[12] Corless, R. M.; Essex, C.; Nerenberg, M. A.H., Numerical methods can suppress chaos, Phys. Lett. A, 157, 27-36 (1991)
[13] Griffiths, D. F.; Sweby, P. K.; Yee, H. C., On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal., 12, 319-338 (1992) · Zbl 0761.65056
[14] Mickens, R. E., Discretizations of nonlinear differential equations using explicit nonstandard methods, J. Comput. Appl. Math., 110, 181-185 (1999) · Zbl 0940.65079
[15] Piyawong, W.; Twizell, E. H.; Gumel, A. B., An unconditionally convergent finite-difference scheme for the SIR model, Appl. Math. Comput., 146, 611-625 (2003) · Zbl 1026.92041
[16] Jódar, L.; Villanueva, R. J.; Arenas, A. J.; González, G. C., Nonstandard numerical methods for a mathematical model for influenza disease, Math. Comput. Simulation, 79, 622-633 (2008) · Zbl 1151.92018
[17] Sekiguchi, M., Permanence of some discrete epidemic models, Int. J. Biomath., 2, 4, 443-461 (2009) · Zbl 1342.92281
[18] Sekiguchi, M.; Ishiwata, E., Global dynamics of a discretized SIRS epidemic model with time delay, J. Math. Anal. Appl., 371, 195-202 (2010) · Zbl 1193.92081
[19] Cull, P., Global stability for population models, Bull. Math. Biol., 43, 47-58 (1981) · Zbl 0451.92011
[20] Clark, C. W., A delay-recruitment model of population dynamics, with an application to baleen whale populations, J. Math. Biol., 3, 381-391 (1976) · Zbl 0337.92011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.