×

A global existence result for the compressible Navier–Stokes equations in the critical \(L ^{p }\) framework. (English) Zbl 1229.35167

The paper investigates the global well-posedness problem for the barotropic compressible Navier-Stokes system in the whole space \({\mathbb{R}}^d\), \(d\geq 2\). Specifically, the case of a critical framework is considered. This critical framework is not related to the energy space. Global existence is obtained for small perturbations of a stable equilibrium state in the sense of suitable \(L^p\)-type Besov norms. Thus one may exhibit a large highly oscillating initial velocity fields for which global well-posedness holds.

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bahouri, H., Chemin J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (to appear) · Zbl 1227.35004
[2] Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(4), 209–246 (1981)
[3] Bresch D., Desjardins B.: On the existence of global weak solutions to the Navier– Stokes equations for viscous compressible and heat conducting fluids. Journal de Mathématiques Pures et Appliquées 87(1), 57–90 (2007) · Zbl 1122.35092 · doi:10.1016/j.matpur.2006.11.001
[4] Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Revista Matemática Iberoamericana 13(3), 515–541 (1997) · Zbl 0897.35061 · doi:10.4171/RMI/229
[5] Chemin J.-Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. Journal d’Analyse Mathématique 77, 25–50 (1999) · Zbl 0938.35125 · doi:10.1007/BF02791256
[6] Chemin, J.-Y., Gallagher, I., Paicu, M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. (to appear) · Zbl 1229.35168
[7] Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Inventiones Mathematicae 141(3), 579–614 (2000) · Zbl 0958.35100 · doi:10.1007/s002220000078
[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001) and 27, 2531–2532 (2002) · Zbl 1007.35071
[9] Danchin R.: On the uniqueness in critical spaces for compressible Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 12(1), 111–128 (2005) · Zbl 1125.76061 · doi:10.1007/s00030-004-2032-2
[10] Danchin R.: Uniform estimates for transport-diffusion equations. J. Hyperbolic Differ. Equ. 4(1), 1–17 (2007) · Zbl 1117.35012 · doi:10.1142/S021989160700101X
[11] Danchin R.: Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density. Commun. Partial Differ. Equ. 32, 1373–1397 (2007) · Zbl 1120.76052 · doi:10.1080/03605300600910399
[12] Danchin R., Desjardins B.: Existence of solutions for compressible fluid models of Korteweg type. Annales de l’IHP, Analyse Non Linéaire 18, 97–133 (2001) · Zbl 1010.76075
[13] Fujita H., Kato T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[14] Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. (in press) · Zbl 1270.35342
[15] Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986) · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[16] Kato T.: Strong L p -solutions of the Navier–Stokes equation in $${\(\backslash\)mathbb{R}\^{m} }$$ , with applications to weak solutions. Math. Z. 187(4), 471–480 (1984) · Zbl 0545.35073
[17] Haspot, B.: Well-posedness in critical spaces for barotropic viscous fluids, preprint · Zbl 1238.35100
[18] Hmidi T.: Régularité höldérienne des poches de tourbillon visqueuses. Journal de Mathématiques Pures et Appliquées 84(11), 1455–1495 (2005) · Zbl 1095.35024 · doi:10.1016/j.matpur.2005.01.004
[19] Kobayashi T., Shibata Y.: Remark on the rate of decay of solutions to linearized compressible Navier–Stokes equations. Pac. J. Math. 207(1), 199–234 (2002) · Zbl 1060.35104 · doi:10.2140/pjm.2002.207.199
[20] Lions P.-L.: Mathematical Topics in Fluid Dynamics: Compressible Models, vol 2. Oxford University Press, Oxford (1998)
[21] Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980) · Zbl 0429.76040
[22] Mucha P.B.: The Cauchy problem for the compressible Navier–Stokes equations in the L p -framework. Nonlinear Anal. 52(4), 1379–1392 (2003) · Zbl 1048.35065 · doi:10.1016/S0362-546X(02)00270-5
[23] Nash J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bulletin de la Société Mathématique de France 90, 487–497 (1962)
[24] Planchon F.: Asymptotic behavior of global solutions to the Navier–Stokes equations in $${\(\backslash\)mathbb{R}\^3}$$ . Revista Matemática Iberoamericana 14(1), 71–93 (1998) · Zbl 0910.35096 · doi:10.4171/RMI/235
[25] Vishik M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998) · Zbl 0926.35123 · doi:10.1007/s002050050128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.