×

A contact domain method for large deformation frictional contact problems. II: Numerical aspects. (English) Zbl 1228.74054

Summary: This second part of the work describes the numerical aspects of the developed contact domain method for large deformation frictional contact problems. The theoretical basis of this contact method is detailed in the first part of this work. Starting from this, the present contribution focuses on describing important algorithmic details that go along with the finite element implementation for two-dimensional problems. Important aspects are the construction of the contact domain mesh, via a constraint Delaunay triangulation, the linearization of the discretized contact contributions and some important technical aspects about the extrapolation procedure used for the predictive active set strategy. Finally a set of numerical examples is presented to demonstrate the performance of the developed contact strategy. Demanding static and dynamic contact problems in the context of large deformations, including frictional effects as well as self contact, show the wide applicability and the robustness of the proposed method.
(For part I see [ibid. 2591–2606 (2009; Zbl 1228.74055)].

MSC:

74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Citations:

Zbl 1228.74055
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benson, D.; Hallquist, J. A., Single surface contact algorithm for the post-buckling analysis of shell structures, Comput. Method Appl. Mech. Engrg., 78, 141-163 (1990) · Zbl 0708.73079
[2] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (1997), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0891.73001
[3] Chung, J.; Hulbert, G. M.A., Time integration algorithm for structural dynamics with improved numerical dissipation: the Generalized-alpha method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[4] Crisfield, M. A., Re-visiting the contact patch test, Int. J. Numer. Method Engrg., 48, 435-449 (2000) · Zbl 0969.74062
[5] El-Abbasi, N.; Bathe, K.-J., Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct., 79, 1473-1486 (2001)
[6] K.A. Fischer, Mortar Type Methods Applied to Nonlinear Contact Mechanics, Ph.D. Thesis, Research Report F05/2, Institut für Baumechanik und Numerische Mechanik, Universtität Hannover, Germany, 2005.; K.A. Fischer, Mortar Type Methods Applied to Nonlinear Contact Mechanics, Ph.D. Thesis, Research Report F05/2, Institut für Baumechanik und Numerische Mechanik, Universtität Hannover, Germany, 2005.
[7] Fischer, K. A.; Wriggers, P., Mortar based frictional contact formulation for higher order interpolations using the moving friction cone, Comput. Method Appl. Mech. Engrg., 195, 5020-5036 (2006) · Zbl 1118.74047
[8] Heintz, P.; Hansbo, P., Stabilized Lagrange multiplier method for bilateral elastic contact with friction, Comput. Method Appl. Mech. Engrg., 195, 4323-4333 (2006) · Zbl 1123.74045
[9] Hertz, H., Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, 92, 156-171 (1881) · JFM 14.0807.01
[10] Idelsohn, S. R.; Onate, E.; Calvo, N.; Del Pin, F., The meshless finite element method, Int. J. Numer. Method Engrg., 58, 893-912 (2003) · Zbl 1035.65129
[11] Laursen, T. A., Computational Contact and Impact Mechanics (2002), Springer · Zbl 0996.74003
[12] Newmark, N., A method of computation for structural dynamics, J. Engrg. Mech. Div., 85, 67-94 (1959)
[13] Oldenburg, M.; Larsgunnar, N., The position code algorithm for contact searching, Int. J. Numer. Method Engrg., 37, 359-386 (1994) · Zbl 0788.73071
[14] Oliver, J.; Hartmann, S.; Cante, J. C.; Weyler, R.; Hernández, J., A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis, Comput. Method Appl. Mech. Engrg., 198, 2591-2606 (2009) · Zbl 1228.74055
[15] Puso, M.; Laursen, T., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Method Appl. Mech. Engrg., 193, 601-629 (2004) · Zbl 1060.74636
[16] Puso, M.; Laursen, T., A mortar segment-to-segment frictional contact method for large deformations, Comput. Method Appl. Mech. Engrg., 193, 4891-4913 (2004) · Zbl 1112.74535
[17] Wriggers, P., Computational Contact Mechanics (2006), Springer: Springer Berlin/Heidelberg/New York · Zbl 1104.74002
[18] Yang, B.; Laursen, T., A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations, Comput. Mech., 41, 189-205 (2008) · Zbl 1162.74481
[19] Yang, B.; Laursen, T., A large deformation mortar formulation of self contact with finite sliding, Comput. Method Appl. Mech. Engrg., 197, 756-772 (2008) · Zbl 1169.74513
[20] Yang, B.; Laursen, T.; Meng, X., Two-dimensional mortar contact methods for large deformation frictional sliding, Int. J. Numer. Method Engrg., 62, 1183-1225 (2005) · Zbl 1161.74497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.