×

On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians. (English) Zbl 1221.35262

Summary: We consider the problem of minimising the \(k\)th eigenvalue, \(k \geq 2\), of the (\(p\)-)Laplacian with Robin boundary conditions with respect to all domains in \({\mathbb{R}^N}\) of given volume. When \(k = 2\), we prove that the second eigenvalue of the \(p\)-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For \(p = 2\) and \(k \geq 3\), we prove that in many cases a minimiser cannot be independent of the value of the constant in the boundary condition, or equivalently of the domain’s volume. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Brezis, H.: Analyse fonctionnelle. In: Collection Mathématiques Appliquées pour la Maî trise. Masson, Paris (1983) (Théorie et applications)
[2] Bucur D., Daners D.: An alternative approach to the Faber–Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ. 37, 75–86 (2010) · Zbl 1186.35118 · doi:10.1007/s00526-009-0252-3
[3] Bucur D., Henrot A.: Minimization of the third eigenvalue of the Dirichlet Laplacian. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, 985–996 (2000) · Zbl 0974.35082 · doi:10.1098/rspa.2000.0546
[4] Courant R., Hilbert D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953) · Zbl 0051.28802
[5] Dai, Q., Fu, Y.: Faber–Krahn inequality for Robin problem involving p-Laplacian. Preprint · Zbl 1209.35093
[6] Dancer E.N., Daners D.: Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Differ. Equ. 138, 86–132 (1997) · Zbl 0886.35063 · doi:10.1006/jdeq.1997.3256
[7] Daners D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352, 4207–4236 (2000) · Zbl 0947.35072 · doi:10.1090/S0002-9947-00-02444-2
[8] Daners D., Drábek P.: A priori estimates for a class of quasi-linear elliptic equations. Trans. Am. Math. Soc. 361, 6475–6500 (2009) · Zbl 1181.35098 · doi:10.1090/S0002-9947-09-04839-9
[9] Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1987) · Zbl 0628.47017
[10] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[11] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983) · Zbl 0562.35001
[12] Giorgi, T., Smits, R.G.: Monotonicity results for the principal eigenvalue of the generalized Robin problem. Ill. J. Math. 49, 1133–1143 (2005) (electronic) · Zbl 1089.35038
[13] Goldstein G.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11, 457–480 (2006) · Zbl 1107.35010
[14] Henrot, A.: Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3, 443–461 (2003) (Dedicated to Philippe Bénilan) · Zbl 1049.49029
[15] Kennedy J.: A Faber–Krahn inequality for the Laplacian with generalised Wentzell boundary conditions. J. Evol. Equ. 8, 557–582 (2008) · Zbl 1154.35413 · doi:10.1007/s00028-008-0393-4
[16] Kennedy J.: An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Am. Math. Soc. 137, 627–633 (2009) · Zbl 1181.35156 · doi:10.1090/S0002-9939-08-09704-9
[17] Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations [Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis]. Academic Press, New York (1968)
[18] Lê A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64, 1057–1099 (2006) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[19] Mugnolo, D., Romanelli, S.: Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions. Electron. J. Differ. Equ. 118, 1–20 (2006) (electronic) · Zbl 1117.47036
[20] Payne L.E., Weinberger H.F.: Lower bounds for vibration frequencies of elastically supported membranes and plates. J. Soc. Indust. Appl. Math. 5, 171–182 (1957) · Zbl 0083.19406 · doi:10.1137/0105012
[21] Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984) · Zbl 0522.35018 · doi:10.1016/0022-0396(84)90105-0
[22] Vázquez J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984) · Zbl 0561.35003 · doi:10.1007/BF01449041
[23] Wolf S.A., Keller J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A 447, 397–412 (1994) · Zbl 0816.35097 · doi:10.1098/rspa.1994.0147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.