×

Boundedness of Lusin-area and functions on localized BMO spaces over doubling metric measure spaces. (English) Zbl 1220.42014

Let \((X,d)\) be a metric space endowed with a regular Borel measure \(\mu\) such that \(0<\mu(B(x,r))<\infty\) \((x\in X\), \(r>0)\). \((X,d,\mu)\) is called a doubling metric measure space if \(\mu(B(x,2r))\leq C_1\mu(B(x,r))\). A positive function \(\rho\) on \(X\) is called admissible if, for some \(C_0\), \(k_0>0\), \(\rho(x)^{-1}\leq C_0\rho(y)^{-1}(1+\rho(y)^{-1}d(x,y))^{k_0}\) \((x,y\in X)\). For an admissible function \(\rho\) and \(q\in [1,\infty)\), a function \(f\in L_{\text{loc}}^q(X)\) is said to be in \(\text{BMO}_\rho^q(X)\) if
\[ \begin{aligned}\|f\|_{\text{BMO}_\rho^q(X)}= &\sup_{B=B(x,r);\,x\in X,\, r<\rho(x)}\biggl( \mu(B)^{-1}\int_B|f(y)-f_B|^q\,d\mu(y)\biggr)^{1/q}\\ +&\sup_{B=B(x,r);\,x\in X,\, r\geq\rho(x)}\biggl(\mu(B)^{-1}\int_B|f(y)|^q\,d\mu(y) \biggr)^{1/q}<\infty.\end{aligned} \]
Similarly, a real valued function \(f\in L_{\text{loc}}^q(X)\) is said to be in \(\text{BLO}_\rho^q(X)\) if, in the definition of \(\text{BMO}_\rho^q(X)\), \(f_B\) is replaced by \(\text{ess\, inf}_{u\in B}f(u)\). In the case \((X,d,\mu)= (\mathbb R^n,|\cdot|,dx)\) and \(\rho\equiv1\), \(\text{BMO}_\rho^q(X)\) coincides with the Goldberg’s local BMO space bmo. If \(\rho\) is an admissible function, \(\text{BMO}_\rho^q(X)\cong\text{BMO}_\rho^1(X)=:\text{BMO}_\rho(X)\).
Now let \(\rho\) be an admissible function and \(\{Q_t\}_{t\geq0}\) be a family of operators bounded on \(L^2(X)\) with integral kernels \(\{Q_t(x,y)\}_{t\geq0}\) satisfying that there exist \(C\), \(\delta_1>0\), \(\delta_2\in (0,1)\), \(\gamma>0\) such that \(|Q_t(x,y)|\leq C(\mu(B(x,t))+\mu(B(x,d(x,y)))^{-1}(1+d(x,y)/t)^{-\gamma} (1+t/\rho(x))^{-\delta_1}\), and \(|\int_XQ_t(x,z)\,d\mu(z)|\leq C(1+\rho(x)/t)^{-\delta_2}\). Using this family of operators, the authors define the Littlewood-Paley \(g\)-function \(g(f)\), Lusin’s area function \(S(f)\) and the \(g_\lambda^*\) function \(g_\lambda^*(f)\) by
\[ \begin{aligned} g(f)(x)&= \bigg(\int_0^\infty |Q_t(f)(x)|^2\,dt/t\bigg)^{1/2},\\ S(f)(x)&= \biggl(\int_0^\infty \int_{d(x,y)<t} |Q_t(f)(y)|^2 \mu(B(y,t))^{-1}\,d\mu(y)\,dt/t\biggr)^{1/2},\\ g_\lambda^*(f)(x)&= \biggl(\iint_{X\times(0,\infty)} |Q_t(f)(y)|^2 (1+d(x,y)/t)^{-\lambda}\mu(B(y,t))^{-1}\,d\mu(y)\,dt/t\biggr)^{1/2}.\end{aligned} \]
Their main result is the following: Let \(X\) be a doubling metric measure space satisfying one more condition, “the \(\delta\)-annular decay property”. Let \(\rho\) be an admissible function. Assume that the Littlewood-Paley \(g\)-function is bounded on \(L^2(X)\). Then \(\|S(f)^2\|_{\text{BLO}_\rho(X)}\leq C \|f\|_{\text{BMO}_\rho(X)}^2\).
If \(3n<\lambda <\infty\), the same result holds for the \(g_\lambda^*\) function without assuming “the \(\delta\)-annular decay property”.
Relating to their boundedness results, the authors give a nonnegative \(f\in\text{bmo}(\mathbb R)\) which is not in \(\text{blo}(\mathbb R)\).

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces
51F99 Metric geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Buckley, S. M., Is the maximal function of a Lipschitz function continuous?, Ann. Acad. Sci. Fenn. Math., 24, 519-528 (1999)
[2] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, Grad. Stud. Math., vol. 33 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0981.51016
[3] Coifman, R. R.; Rochberg, R., Another characterization of BMO, Proc. Amer. Math. Soc., 79, 249-254 (1980) · Zbl 0432.42016
[4] Coifman, R. R.; Weiss, G., Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math., vol. 242 (1971), Springer-Verlag: Springer-Verlag Berlin · Zbl 0224.43006
[5] Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, 569-645 (1977) · Zbl 0358.30023
[6] Colding, T. H.; Minicozzi, W. P., Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., 51, 113-138 (1998) · Zbl 0928.58022
[7] David, G.; Journé, J.-L.; Semmes, S., Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana, 1, 1-56 (1985) · Zbl 0604.42014
[8] Dziubański, J., Note on \(H^1\) spaces related to degenerate Schrödinger operators, Illinois J. Math., 49, 1271-1297 (2005) · Zbl 1140.42010
[9] Dziubański, J.; Garrigós, G.; Martínez, T.; Torrea, J. L.; Zienkiewicz, J., BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249, 329-356 (2005) · Zbl 1136.35018
[10] Dziubański, J.; Zienkiewicz, J., Hardy space \(H^1\) associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana, 15, 279-296 (1999) · Zbl 0959.47028
[11] Fefferman, C., The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9, 129-206 (1983) · Zbl 0526.35080
[12] García-Cuerva, J.; Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., vol. 116 (1985), North-Holland: North-Holland Amsterdam-New York-Oxford · Zbl 0578.46046
[13] Goldberg, D., A local version of real Hardy spaces, Duke Math. J., 46, 27-42 (1979) · Zbl 0409.46060
[14] Grafakos, L., Modern Fourier Analysis, Grad. Texts in Math., vol. 250 (2008), Springer-Verlag: Springer-Verlag New York
[15] Gehring, F. W., The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130, 265-277 (1973) · Zbl 0258.30021
[16] Han, Y.; Müller, D.; Yang, D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal. (2008), Art. ID 893409, 250 pp · Zbl 1193.46018
[17] Hu, G.; Yang, Da.; Yang, Do., \(h^1\), bmo, blo and Littlewood-Paley \(g\)-functions with non-doubling measures, Rev. Mat. Iberoamericana, 25, 595-667 (2009) · Zbl 1179.42018
[18] J. Huang, H. Liu, Area integral associated to the Schrödinger operator, preprint.; J. Huang, H. Liu, Area integral associated to the Schrödinger operator, preprint.
[19] J. Huang, H. Liu, Littlewood-Paley \(g_\lambda^\ast \); J. Huang, H. Liu, Littlewood-Paley \(g_\lambda^\ast \)
[20] Jiang, Y., Spaces of type BLO for non-doubling measures, Proc. Amer. Math. Soc., 133, 2101-2107 (2005) · Zbl 1059.42009
[21] John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426 (1961) · Zbl 0102.04302
[22] Li, H., Estimations \(L^p\) des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal., 161, 152-218 (1999) · Zbl 0929.22005
[23] C. Lin, H. Liu, The BMO-type space \(\operatorname{BMO}_{\mathcal{L}} \); C. Lin, H. Liu, The BMO-type space \(\operatorname{BMO}_{\mathcal{L}} \)
[24] Macías, R. A.; Segovia, C., Lipschitz functions on spaces of homogeneous type, Adv. Math., 33, 257-270 (1979) · Zbl 0431.46018
[25] Macías, R. A.; Segovia, C.; Torrea, J. L., Singular integral operators with non-necessarily bounded kernels on spaces of homogeneous type, Adv. Math., 93, 23-60 (1992) · Zbl 0795.42010
[26] Maasalo, O. E., The Gehring lemma in metric spaces
[27] Meng, Y.; Nakai, E.; Yang, D., Estimates for Lusin-area and Littlewood-Paley \(g_\lambda^\ast\) functions over spaces of homogeneous type, Nonlinear Anal., 72, 2721-2736 (2010) · Zbl 1183.42019
[28] Meng, Y.; Yang, D., Estimates for Littlewood-Paley operators in \(BMO(R^n)\), J. Math. Anal. Appl., 346, 30-38 (2008) · Zbl 1257.42030
[29] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207-226 (1972) · Zbl 0236.26016
[30] Nagel, A.; Stein, E. M.; Wainger, S., Balls and metrics defined by vector fields I. Basic properties, Acta Math., 155, 103-147 (1985) · Zbl 0578.32044
[31] Nakai, E.; Yabuta, K., Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan, 37, 207-218 (1985) · Zbl 0546.42019
[32] Shen, Z., \(L^p\) estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45, 513-546 (1995) · Zbl 0818.35021
[33] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0821.42001
[34] Strömberg, J.-O.; Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Math., vol. 1381 (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0676.42021
[35] Tessera, R., Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France, 135, 47-64 (2007) · Zbl 1196.53029
[36] Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0813.22003
[37] Yang, Da.; Yang, Do.; Zhou, Y., Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators, Commun. Pure Appl. Anal., 9, 779-812 (2010) · Zbl 1188.42008
[38] Yang, D.; Zhou, Y., Localized Hardy spaces \(H^1\) related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc., in press; see also · Zbl 1217.42044
[39] Yang, D.; Zhou, Y., New properties of Besov and Triebel-Lizorkin spaces on RD-spaces · Zbl 1215.46026
[40] Zhong, J., The Sobolev estimates for some Schrödinger type operators, Math. Sci. Res. Hot-Line, 3, 8, 1-48 (1999) · Zbl 0956.35029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.