×

Rationality of three-dimensional quotients by monomial actions. (English) Zbl 1219.14017

Let \(K\) be a field and let \(K(x_1,\ldots ,x_n)\) denote the rational function field over \(K\) in \(n\) indeterminates. A \(K\)-automorphism \(\sigma\) of \(K(x_1,\ldots ,x_n)\) is called monomial if, for each \(1\leq j \leq n\), \[ \sigma(x_j)=a_j(\sigma)\prod_{1\leq i\leq n}x_i^{m_{i,j}} , \] for some \(a_j(\sigma)\in K\backslash \{0\}\) and \((m_{i,j})_{1\leq i,j \leq n} \in \text{GL}_n(\mathbb{Z})\).
The paper under review deals with the following type of rationality problem: given a finite group \(G\) acting on \(K(x_1,\ldots ,x_n)\) by monomial \(K\)-automorphisms, is the fixed field \(K(x_1,\ldots ,x_n)^G\) purely transcendental over \(K\)?
In the case \(n=2\), this question was answered in the affirmative, for every finite group \(G\) and every field \(K\), by M. Hajja in [J. Algebra 85, No. 1, 243–250 (1983; Zbl 0519.12016)] and [J. Algebra 109, No. 1, 46–51 (1987; Zbl 0624.12014)].
In the case \(n=3\), the same conclusion holds for purely monomial actions (meaning that \(a_j(\sigma)=1\) for every \(\sigma \in G\) and \(1\leq j \leq n\)), from work by M. Hajja and M. Kang [J. Algebra 149, No. 1, 139–154 (1992; Zbl 0760.12004)] and [J. Algebra 170, No. 3, 805–860 (1994; Zbl 0831.14003)], and by A. Hoshi and Y. Rikuna [Math. Comput. 77, No. 263, 1823–1829 (2008; Zbl 1196.14018)]. On the other hand, there exist examples of non-pure monomial actions such that \(K(x_1,x_2,x_3)^G\) is not \(K\)-rational, nor even retract-rational.
The main result of this paper reads as follows: Let \(K\) be a quadratically closed field of characteristic \(\text{char}(K)\neq 2\) and let \(G\) be a finite \(2\)-group. If \(G\) acts on \(K(x_1,x_2,x_3)\) by monomial \(K\)-automorphisms, then \(K(x_1,x_2,x_3)^G\) is purely transcendental over \(K\).
In order to prove this, the authors show first that it suffices to consider the case in which the homomorphism \(G\rightarrow \text{GL}_3(\mathbb{Z})\), \(\sigma \mapsto (m_{i,j})_{1\leq i,j \leq n}\), is injective. Then, they examine the \(36\) different cases corresponding to the conjugacy classes of finite subgroups of \(\text{GL}_3(\mathbb{Z})\) which are \(2\)-groups. In each case, suitable computations allow the authors to reduce the proof to some known rationality results obtained by several authors, including A. Ahmad, H. Chu, M. Hajja, S.-J. Hu, M. Kang and J. Ohm.
An alternative geometric proof is also given, under the extra assumption that \(K\) is an algebraically closed field of characteristic \(\text{char}(K)=0\).
In addition, the authors obtain some results concerning the Linear Noether’s Problem, as an application of their main result.

MSC:

14E08 Rationality questions in algebraic geometry
12F20 Transcendental field extensions
13A50 Actions of groups on commutative rings; invariant theory
12F10 Separable extensions, Galois theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahmad, H.; Hajja, M.; Kang, M., Rationality of some projective linear actions, J. Algebra, 228, 643-658 (2000) · Zbl 0993.12003
[2] Chu, H.; Hu, S.-J.; Kang, M., Noether’s problem for dihedral 2-groups, Comment. Math. Helv., 79, 147-159 (2004) · Zbl 1069.12003
[3] Chu, H.; Hu, S.-J.; Kang, M.; Kunyavskii, B. E., Noether’s problem and the unramified Brauer group for groups of order 64, Int. Math. Res. Not. IMRN, 12, 2329-2366 (2010) · Zbl 1196.12005
[4] Chu, H.; Hu, S.-J.; Kang, M.; Prokhorov, Y. G., Noether’s problem for groups of order 32, J. Algebra, 320, 3022-3035 (2008) · Zbl 1154.14011
[5] Coray, D. F.; Tsfasman, M. A., Arithmetic on singular del Pezzo surfaces, Proc. Lond. Math. Soc., 57, 25-87 (1988) · Zbl 0653.14018
[6] Debarre, O., Higher-Dimensional Algebraic Geometry (2001), Springer-Verlag · Zbl 0978.14001
[7] Ding, S.; Kang, M.; Tan, E., Chiungtze C. Tsen (1898-1940) and Tsen’s theorems, Rocky Mountain J. Math., 29, 1237-1269 (1999) · Zbl 0955.01031
[8] Greenberg, M. J., Lectures on Forms in Many Variables (1969), W.A. Benjamin, Inc.: W.A. Benjamin, Inc. New York · Zbl 0185.08304
[9] Hajja, M., A note on monomial automorphisms, J. Algebra, 85, 243-250 (1983) · Zbl 0519.12016
[10] Hajja, M., Rationality of finite groups of monomial automorphisms of \(K(x, y)\), J. Algebra, 109, 46-51 (1987) · Zbl 0624.12014
[11] Hajja, M.; Kang, M., Finite group actions on rational function fields, J. Algebra, 149, 139-154 (1992) · Zbl 0760.12004
[12] Hajja, M.; Kang, M., Three-dimensional purely monomial group actions, J. Algebra, 170, 805-860 (1994) · Zbl 0831.14003
[13] Hajja, M.; Kang, M., Some actions of symmetric groups, J. Algebra, 177, 511-535 (1995) · Zbl 0837.20054
[14] Hajja, M.; Kang, M.; Ohm, J., Function fields of conics as invariant subfields, J. Algebra, 163, 383-403 (1994) · Zbl 0797.12005
[15] Hoshi, A.; Rikuna, Y., Rationality problem of three-dimensional purely monomial group actions: the last case, Math. Comp., 77, 1823-1829 (2008) · Zbl 1196.14018
[16] Iskovskikh, V. A., Rational surfaces with a pencil of rational curves, Math. USSR Sb., 3, 563-587 (1967) · Zbl 0181.24003
[17] Kang, M., Rationality problem of \(GL_4\) group actions, Adv. Math., 181, 321-352 (2004) · Zbl 1084.14508
[18] Kang, M., Some group actions on \(K(x_1, x_2, x_3)\), Israel J. Math., 146, 77-93 (2005) · Zbl 1110.12001
[19] Kang, M., Some rationality problems revisited, (Ji, L.; Liu, Kefeng; Yang, Lo; Yau, Shing-Tung, Proceedings of the 4th International Congress of Chinese Mathematicians. Proceedings of the 4th International Congress of Chinese Mathematicians, Hangzhou, 2007 (2007), Higher Education Press/International Press: Higher Education Press/International Press Beijing/Somerville)
[20] Kang, M., Rationality problem for some meta-abelian groups, J. Algebra, 322, 1214-1219 (2009) · Zbl 1181.13004
[21] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P., The Book of Involutions (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[22] Kuniyoshi, H., On a problem of Chevalley, Nagoya Math. J., 8, 65-87 (1955) · Zbl 0065.02602
[23] Lazarsfeld, R., Positivity in Algebraic Geometry I (2004), Springer-Verlag: Springer-Verlag Berlin
[24] Manin, Yu. I., Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math., 30, 55-113 (1966) · Zbl 0171.41701
[25] Manin, Yu. I., Cubic Forms: Algebra, Geometry and Arithmetic (1986), North-Holland Publ. Co.: North-Holland Publ. Co. Amsterdam, English translation by M. Hazewinkel · Zbl 0582.14010
[26] Manin, Yu. I.; Tsfasman, M. A., Rational varieties: algebra, geometry and arithmetic, Russian Math. Surveys, 41, 51-116 (1986) · Zbl 0621.14029
[27] Prokhorov, Y. G., Fields of invariants for finite linear groups, (Bogomolov, F.; Tschinkel, Y., Cohomological and Geometric Approaches to Rationality Problems. Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., vol. 282 (2010), Birkhäuser: Birkhäuser Boston) · Zbl 1204.14007
[28] Saltman, D. J., A nonrational field, answering a question of Hajja, (Boulagouaz, M.; Tignol, J.-P., Algebra and Number Theory (2000), Marcel Dekker: Marcel Dekker New York) · Zbl 0977.12005
[29] Serre, J.-P., Linear Representations of Finite Groups, Grad. Texts in Math., vol. 42 (1978), Springer-Verlag
[30] Swan, R. G., Noether’s problem in Galois theory, (Srinivasan, B.; Sally, J., Emmy Noether in Bryn Mawr (1983), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0538.12012
[31] Swinnerton-Dyer, H. P.F., Rational points on del Pezzo surfaces of degree 5, (Algebraic Geometry, Proc. 5th Nordic Summer-School Math.. Algebraic Geometry, Proc. 5th Nordic Summer-School Math., Oslo, 1970 (1972), Wolters-Noordhoff: Wolters-Noordhoff Groningen) · Zbl 0275.14013
[32] Tahara, K., On the finite subgroups of \(GL(3, Z)\), Nagoya Math. J., 41, 169-209 (1971) · Zbl 0194.33603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.