×

Localized Hardy spaces \(H^1\) related to admissible functions on RD-spaces and applications to Schrödinger operators. (English) Zbl 1217.42044

Let \(\mathcal {X}\) be an RD-space, which means that \({\mathcal X}\) is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in \({\mathcal X}\). A positive function \(\rho\) on \({\mathcal X}\) is called admissible if there exist positive constants \(C_3\) and \(k_0\) such that for all \(x,y\in{\mathcal X}\),
\[ \rho(y)\leq C_3[\rho(x)]^{\frac{1}{1+k_0}}[\rho(x)+d(x,y)]^{\frac{k_0}{1+k_0}}, \]
where \(d\) is the metric on \({\mathcal X}\). A nontrivial class of admissible function is the well-known reverse Hölder class. Let \({\mathcal G}^\varepsilon_0(\beta,\gamma)\) be the completion of the set which is composed of test functions with the additional property. The Hardy space \(H^1_{\rho}({\mathcal X})\) associated to \(\rho\) is defined as follows:
\[ H^1_{\rho}({\mathcal X})=\{f\in {\mathcal G}^\varepsilon_0(\beta,\gamma)': \|f\|_{H^1_{\rho}({\mathcal X})}=\|G_{\rho}(f)\|_{L^1({\mathcal X})}<\infty \}, \]
where \(\varepsilon\in (0,1)\), \(\beta,\gamma\in (0,\varepsilon)\) and \(G_\rho(f)\) is the grand maximal function associated to \(\rho\).
At first, the authors obtain an atomic decomposition characterization of \(H^1_\rho({\mathcal X})\). They show that \(H^1_{\rho}({\mathcal X})=H^{1,q}_{\rho}({\mathcal X})\) with equivalent norms, where \(H^{1,q}_{\rho}({\mathcal X})\) is the atomic Hardy space associated to \(\rho\). Secondly, they establish a radial maximal function characterization of \(H^1_{\rho}({\mathcal X})\) and obtain another characterization of \(H^1_{\rho}({\mathcal X})\) via a variant of the radial maximal function, where the radial maximal function is associated to the admissible function \(\rho\). Moreover, they prove the boundedness of certain localized singular integrals on \(H^1_{\rho}({\mathcal X})\) via a finite atomic decomposition characterization of some dense subspace of \(H^1_{\rho}({\mathcal X})\). The theory in this paper can be applied, respectively, to the Schrödinger operator or degenerate Schrödinger operator on \({\mathcal R}^n\), or to the sub-Laplace Schrödinger operator on Heisenberg groups or connected and simply connected nilpotent Lie groups and some new results are also obtained.
Reviewer: Liu Yu (Beijing)

MSC:

42B30 \(H^p\)-spaces
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis
42B37 Harmonic analysis and PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), no. 4, 691 – 727 (English, with English and French summaries). · Zbl 0792.22005
[2] Pascal Auscher and Besma Ben Ali, Maximal inequalities and Riesz transform estimates on \?^{\?} spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1975 – 2013 (English, with English and French summaries). · Zbl 1161.35003
[3] Marcin Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3535 – 3542. · Zbl 1070.42006
[4] Michael Christ, A \?(\?) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601 – 628. · Zbl 0758.42009
[5] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247 – 286 (English, with English and French summaries). · Zbl 0864.42009
[6] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. · Zbl 0224.43006
[7] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569 – 645. · Zbl 0358.30023
[8] G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1 – 56 (French). · Zbl 0604.42014
[9] Xuan Thinh Duong and Lixin Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943 – 973. · Zbl 1078.42013
[10] Jacek Dziubański, Atomic decomposition of \?^{\?} spaces associated with some Schrödinger operators, Indiana Univ. Math. J. 47 (1998), no. 1, 75 – 98. · Zbl 0909.42015
[11] Jacek Dziubański and Jacek Zienkiewicz, Hardy space \?\textonesuperior associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), no. 2, 279 – 296. · Zbl 0959.47028
[12] Jacek Dziubański and Jacek Zienkiewicz, \?^{\?} spaces for Schrödinger operators, Fourier analysis and related topics (Bȩdlewo, 2000) Banach Center Publ., vol. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 45 – 53. · Zbl 1039.42018
[13] Jacek Dziubański and Jacek Zienkiewicz, \?^{\?} spaces associated with Schrödinger operators with potentials from reverse Hölder classes, Colloq. Math. 98 (2003), no. 1, 5 – 38. · Zbl 1083.42015
[14] Jacek Dziubański and Jacek Zienkiewicz, Hardy spaces \?\textonesuperior for Schrödinger operators with certain potentials, Studia Math. 164 (2004), no. 1, 39 – 53. · Zbl 1061.47040
[15] Jacek Dziubański, Note on \?\textonesuperior spaces related to degenerate Schrödinger operators, Illinois J. Math. 49 (2005), no. 4, 1271 – 1297. · Zbl 1140.42010
[16] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, \?\?\? spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), no. 2, 329 – 356. · Zbl 1136.35018
[17] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129 – 206. · Zbl 0526.35080
[18] C. Fefferman and E. M. Stein, \?^{\?} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137 – 193. · Zbl 0257.46078
[19] G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. · Zbl 0508.42025
[20] Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009. · Zbl 1158.42001
[21] Loukas Grafakos, LiGuang Liu, and DaChun Yang, Maximal function characterizations of Hardy spaces on RD-spaces and their applications, Sci. China Ser. A 51 (2008), no. 12, 2253 – 2284. · Zbl 1176.42017
[22] Loukas Grafakos, Liguang Liu, and Dachun Yang, Radial maximal function characterizations for Hardy spaces on RD-spaces, Bull. Soc. Math. France 137 (2009), no. 2, 225 – 251 (English, with English and French summaries). · Zbl 1205.42016
[23] F. W. Gehring, The \?^{\?}-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265 – 277. · Zbl 0258.30021
[24] David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27 – 42. · Zbl 0409.46060
[25] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. · Zbl 0985.46008
[26] Yongsheng Han, Detlef Müller, and Dachun Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), no. 13-14, 1505 – 1537. · Zbl 1179.42016
[27] Yongsheng Han, Detlef Müller, and Dachun Yang, A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal. , posted on (2008), Art. ID 893409, 250. · Zbl 1193.46018
[28] W. Hebisch and L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 5, 1437 – 1481 (English, with English and French summaries). · Zbl 0988.58007
[29] Tosio Kato, Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday), Adv. in Math. Suppl. Stud., vol. 3, Academic Press, New York-London, 1978, pp. 185 – 195. · Zbl 0461.47018
[30] Kazuhiro Kurata and Satoko Sugano, Fundamental solution, eigenvalue asymptotics and eigenfunctions of degenerate elliptic operators with positive potentials, Studia Math. 138 (2000), no. 2, 101 – 119. · Zbl 0956.35058
[31] Kazuhiro Kurata and Satoko Sugano, A remark on estimates for uniformly elliptic operators on weighted \?^{\?} spaces and Morrey spaces, Math. Nachr. 209 (2000), 137 – 150. , https://doi.org/10.1002/(SICI)1522-2616(200001)209:13.3.CO;2-V · Zbl 0939.35036
[32] Noël Lohoué and Nicolas Th. Varopoulos, Remarques sur les transformées de Riesz sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 11, 559 – 560 (French, with English summary). · Zbl 0582.43003
[33] Hong-Quan Li, Estimations \?^{\?} des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), no. 1, 152 – 218 (French, with French summary). · Zbl 0929.22005
[34] C. Lin, H. Liu and Y. Liu, The Hardy space \( H^1_L\) associated with Schrödinger operators on the Heisenberg group, Submitted.
[35] Guozhen Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, PanAmer. Math. J. 6 (1996), no. 4, 37 – 57. · Zbl 0878.35050
[36] Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257 – 270. , https://doi.org/10.1016/0001-8708(79)90012-4 Roberto A. Macías and Carlos Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 271 – 309. · Zbl 0431.46019
[37] Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257 – 270. , https://doi.org/10.1016/0001-8708(79)90012-4 Roberto A. Macías and Carlos Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 271 – 309. · Zbl 0431.46019
[38] Stefano Meda, Peter Sjögren, and Maria Vallarino, On the \?\textonesuperior -\?\textonesuperior boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2921 – 2931. · Zbl 1273.42021
[39] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207 – 226. · Zbl 0236.26016
[40] Alexander Nagel and Elias M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana 20 (2004), no. 2, 531 – 561. · Zbl 1057.42016
[41] Alexander Nagel and Elias M. Stein, The \partial _{\?}-complex on decoupled boundaries in \Bbb C\(^{n}\), Ann. of Math. (2) 164 (2006), no. 2, 649 – 713. · Zbl 1126.32031
[42] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103 – 147. · Zbl 0578.32044
[43] Laurent Saloff-Coste, Analyse sur les groupes de Lie nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 14, 499 – 502 (French, with English summary). · Zbl 0595.22009
[44] Laurent Saloff-Coste, Fonctions maximales sur certains groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 11, 457 – 459 (French, with English summary). · Zbl 0625.43002
[45] Laurent Saloff-Coste, Analyse sur les groupes de Lie à croissance polynômiale, Ark. Mat. 28 (1990), no. 2, 315 – 331 (French, with English summary). · Zbl 0715.43009
[46] Zhong Wei Shen, \?^{\?} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513 – 546 (English, with English and French summaries). · Zbl 0818.35021
[47] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[48] Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of \?^{\?}-spaces, Acta Math. 103 (1960), 25 – 62. · Zbl 0097.28501
[49] Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. · Zbl 0676.42021
[50] Hans Triebel, Theory of function spaces. III, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel, 2006. · Zbl 1104.46001
[51] Akihito Uchiyama, A maximal function characterization of \?^{\?} on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), no. 2, 579 – 592. · Zbl 0503.46020
[52] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), no. 2, 346 – 410. · Zbl 0634.22008
[53] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003
[54] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. · Zbl 0724.46012
[55] Dachun Yang and Yuan Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), no. 2, 207 – 218. · Zbl 1283.42029
[56] D. Yang and Y. Zhou, New properties of Besov and Triebel-Lizorkin spaces on RD-spaces, Manuscripta Math. (to appear), DOI: 10.1007/s00229-010-0384-y. · Zbl 1215.46026
[57] Jiaping Zhong, The Sobolev estimates for some Schrödinger type operators, Math. Sci. Res. Hot-Line 3 (1999), no. 8, 1 – 48. · Zbl 0956.35029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.