×

Generalized Jacobi elliptic function solution to a class of nonlinear Schrödinger-type equations. (English) Zbl 1217.35169

Summary: With the help of the generalized Jacobi elliptic function, an improved Jacobi elliptic function method is used to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Lin equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35C07 Traveling wave solutions
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] E. Fan and Y. C. Hon, “Generalized tanh method extended to special types of nonlinear equations,” Zeitschrift fur Naturforschung A, vol. 57, no. 8, pp. 692-700, 2002.
[2] A. H. Bokhari, G. Mohammad, M. T. Mustafa, and F. D. Zaman, “Adomian decomposition method for a nonlinear heat equation with temperature dependent thermal properties,” Mathematical Problems in Engineering, vol. 2009, Article ID 926086, 12 pages, 2009. · Zbl 1181.80002 · doi:10.1155/2009/926086
[3] A. Wazwaz, “The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1196-1210, 2005. · Zbl 1082.65585 · doi:10.1016/j.amc.2004.08.005
[4] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700-708, 2006. · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[5] M. F. El-Sabbagh and A. T. Ali, “New exact solutions for (3+1)-dimensional Kadomtsev-Petviashvili equation and generalized (2+1)-dimensional Boussinesq equation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 151-162, 2005. · Zbl 1401.35267
[6] C. Dai and J. Zhang, “Jacobian elliptic function method for nonlinear differential-difference equations,” Chaos, Solitons and Fractals, vol. 27, no. 4, pp. 1042-1047, 2006. · Zbl 1091.34538 · doi:10.1016/j.chaos.2005.04.071
[7] M. F. El-Sabbagh, M. M. Hassan, and E. A.-B. Abdel-Salam, “Quasi-periodic waves and their interactions in the (2 + 1)-dimensional modified dispersive water-wave system,” Physica Scripta, vol. 80, pp. 15006-15014, 2009. · Zbl 1170.76310 · doi:10.1088/0031-8949/80/01/015006
[8] E. Fan, “Extended tanh-function method and its applications to nonlinear equations,” Physics Letters. A, vol. 277, no. 4-5, pp. 212-218, 2000. · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[9] I. A. Hassanien, R. A. Zait, and E. A.-B. Abdel-Salam, “Multicnoidal and multitravelling wave solutions for some nonlinear equations of mathematical physics,” Physica Scripta, vol. 67, no. 6, pp. 457-463, 2003. · Zbl 1142.35569 · doi:10.1238/Physica.Regular.067a00457
[10] Y. Ren and H. Zhang, “New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the (2+1)-dimensional NNV equation,” Physics Letters. A, vol. 357, no. 6, pp. 438-448, 2006. · Zbl 1236.35004 · doi:10.1016/j.physleta.2006.04.082
[11] E. A. B. Abdel-Salam, “Periodic structures based on the symmetrical lucas function of the (2+1)-dimensional dispersive long-wave system,” Zeitschrift fur Naturforschung A, vol. 63, no. 10-11, pp. 671-678, 2008.
[12] E. A.-B. Abdel-Salam, “Quasi-periodic structures based on symmetrical Lucas function of (2+1)-dimensional modified dispersive water-wave system,” Communications in Theoretical Physics, vol. 52, no. 6, pp. 1004-1012, 2009. · Zbl 1382.35253 · doi:10.1088/0253-6102/52/6/06
[13] E. A.-B. Abdel-Salam, “Quasi-periodic, periodic waves, and soliton solutions for the combined KdV-mKdV equation,” Zeitschrift fur Naturforschung A, vol. 64, no. 9-10, pp. 639-645, 2009.
[14] E. A. B. Abdel-Salam and D. Kaya, “Application of new triangular functions to nonlinear partial differential equations,” Zeitschrift fur Naturforschung A, vol. 64, no. 1, pp. 1-7, 2009.
[15] E. A.-B. Abdel-Salam and Z. I. A. Al-Muhiameed, “Generalized Jacobi elliptic function method and non-travelling wave solutions,” Nonlinear Science Letters A, vol. 1, no. 4, pp. 363-372, 2010.
[16] H. F. Baker, Abelian Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1897. · JFM 28.0685.02
[17] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, Germany, 1954. · Zbl 0055.11905
[18] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 1996. · Zbl 0951.30002
[19] A. Borhanifar, M. M. Kabir, and L. Maryam Vahdat, “New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik-Novikov-Veselov system,” Chaos, Solitons and Fractals, vol. 42, no. 3, pp. 1646-1654, 2009. · Zbl 1198.35216 · doi:10.1016/j.chaos.2009.03.064
[20] J. L. Zhang and M. L. Wang, “Exact solutions to a class of nonlinear Schrödinger-type equations,” Pramana Journal of Physics, vol. 67, no. 6, pp. 1011-1022, 2006. · doi:10.1007/s12043-006-0019-8
[21] M. Florjańczyk and L. Gagnon, “Exact solutions for a higher-order nonlinear Schrödinger equation,” Physical Review A, vol. 41, no. 8, pp. 4478-4485, 1990. · doi:10.1103/PhysRevA.41.4478
[22] D.-J. Huang, D.-S. Li, and H.-Q. Zhang, “Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation,” Chaos, Solitons and Fractals, vol. 31, no. 3, pp. 586-593, 2007. · Zbl 1139.35092 · doi:10.1016/j.chaos.2005.10.007
[23] S. Kumar and A. Hasegawa, “Quasi-soliton propagation in dispersion-managed optical fibers,” Optics Letters, vol. 22, no. 6, pp. 372-374, 1997. · doi:10.1364/OL.22.000372
[24] H. W. Schürmann, “Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation,” Physical Review E, vol. 54, no. 4, pp. 4312-4320, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.