×

Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III. (English) Zbl 1217.34080

This paper studies a generalized Gause model with prey harvesting and a generalized Holling response function of type III:
\[ \dot{x} = \rho x(1-x) - y p(x) - \lambda,\quad \dot{y} = y (-\delta + p(x)), \tag{1} \]
where \(x\geq 0\), \(y\geq 0\), and
\[ p(x) = {x^2 \over \alpha x^2 + \beta x + 1}. \tag{2} \]
This basic result is a bifurcation diagram to equation (1).
The authors show that the \(x\)-axis of system (1) is invariant. The system has 2 singular points, \(C\) and \(D\), on the positive \(x\)-axis for \(\rho > 4 \lambda\) and no equilibrium for \(\rho < 4 \lambda\). The two points merge in a saddle-node for \(\rho = 4 \lambda\). In the first quadrant, there is at most one singular point \(E\) which is always of anti-saddle type (i.e., a node, focus, weak focus or center). The singular point \(E\) disappears from the first quadrant by a saddle-node bifurcation by merging, with either \(C\), or \(D\). The point \(E\) can undergo a Hopf bifurcation of order at most two. When the order is two, the second Lyapunov coefficient is positive (the weak focus is repelling).

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V. I., Geometrical methods in the theory of ordinary differential equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0507.34003
[2] Annik Martin, Predator-prey models with delays and prey harvesting, Master of Science thesis, Dalhousie University Halifax, Nova Scotia, 1999.; Annik Martin, Predator-prey models with delays and prey harvesting, Master of Science thesis, Dalhousie University Halifax, Nova Scotia, 1999. · Zbl 1008.34066
[3] Bazykin, A. D., Nonlinear Dynamics of Interacting Populations, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 11 (1998), World Scientific · Zbl 0605.92015
[4] Brauer, F.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2001), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin · Zbl 0967.92015
[5] Broer, H. W.; Naudot, V.; Roussarie, R.; Saleh, K., Dynamics of a predator-prey model with non-monotonic response function, Discrete Contin. Dyn. Syst., 18, 221-251 (2007) · Zbl 1129.92061
[6] Clark, C. W., Mathematical Bioeconomics: The Optimal Management of Renewable Resources (1990), John Wiley and Sons: John Wiley and Sons New York, Toronto · Zbl 0712.90018
[7] Caubergh, M.; Dumortier, F., Hopf-Takens bifurcations and centres, J. Differential Equations, 202, 1-31 (2004) · Zbl 1059.34026
[8] Chow, S. N.; Hale, J. K., Methods of Bifurcation Theory (1982), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin
[9] Chow, S. N.; Li, C.; Wang, D., Normal Forms and Bifurcation of Planar Vector Fields (1994), Cambridge University Press: Cambridge University Press New York
[10] Dumortier, F.; Roussarie, R.; Rousseau, C., Elementary graphics of cyclicity one or two, Nonlinearity, 7, 1001-1043 (1994) · Zbl 0855.58043
[11] Dumortier, F.; Roussarie, R.; Sotomayor, J., Generic 3-parameter families of planar vector fiels: Unfolding of saddle, focus and elliptic singularities with nilpotent linear parts, (Lecture Notes in Math., vol. 1480 (1991), Springer-Verlag: Springer-Verlag New York), 1-164
[12] Dai, G. R.; Tang, M., Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58, 1, 193-210 (1998) · Zbl 0916.34034
[13] R.M.D. Etoua, Étude d’un modèle de Gause généralisé avec récolte de proies et fonction de Holling type III généralisée, Thèse de PhD, Université de Montréal, Novembre 2008.; R.M.D. Etoua, Étude d’un modèle de Gause généralisé avec récolte de proies et fonction de Holling type III généralisée, Thèse de PhD, Université de Montréal, Novembre 2008.
[14] R.M.D. Etoua, Étude des familles standard des déploiements du col nilpotent dont l’axe des abscisses est invariant, preprint, 2010.; R.M.D. Etoua, Étude des familles standard des déploiements du col nilpotent dont l’axe des abscisses est invariant, preprint, 2010.
[15] Freedman, H. I., Deterministic Mathematical Models in Population Ecology (1980), Marcel Dekker: Marcel Dekker New York · Zbl 0448.92023
[16] Freedman, H. I.; Wolkowicz, G. S.K., Predator-prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol., 48, 5/6, 493-508 (1986) · Zbl 0612.92017
[17] Gause, G. F., The Struggle for Existence (1935), Williams and Wilkins: Williams and Wilkins Baltimore
[18] Godeau, R., Algèbre Supérieure (1962), Université Libre de Bruxelles
[19] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Appl. Math. Sci., vol. 112 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1082.37002
[20] Lotka, A., Elements of Physical Biology (1925), Williams and Wilkins: Williams and Wilkins Baltimore · JFM 51.0416.06
[21] Lamontagne, Y.; Coutu, C.; Rousseau, C., Bifurcation analysis of a predator-prey system with generalised Holling type III function response, J. Dynam. Differential Equations, 20, 3, 535-571 (2008) · Zbl 1160.34047
[22] Molles, Manuel C., Ecology: Concepts and Applications (2002), McGraw-Hill Book Company: McGraw-Hill Book Company New York, 586 pp
[23] Perko, L., Differential Equations and Dynamical Systems, Texts Appl. Math., vol. 7 (2002), Springer-Verlag
[24] Shi, Shongling, A method of constructing cycles without contact around a weak focus, J. Differential Equations, 41, 301-312 (1981) · Zbl 0442.34029
[25] Volterra, V., Fluctuations in the abundance of species considered mathematically, Nature, CXVIII, 558-560 (1926) · JFM 52.0453.03
[26] Wolkowicz, G. S.K., Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., 48, 3, 592-606 (1988) · Zbl 0657.92015
[27] Xiao, D.; Jennings, L. S., Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 3, 737-753 (2005) · Zbl 1094.34024
[28] Xiao, D.; Ruan, S., Global analysis in predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 4, 1445-1472 (2001) · Zbl 0986.34045
[29] Hsu, Sze-Bi; Huang, Tzy-Wei, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 3, 763-783 (1995) · Zbl 0832.34035
[30] Zhu, H.; Campbell, S. A.; Wolkowicz, G. S.K., Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63, 2, 636-682 (2002) · Zbl 1036.34049
[31] Rousseau, C.; Zhu, H., PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert’s 16th problem, J. Differential Equations, 196, 169-208 (2004) · Zbl 1046.34055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.