×

Permanence and global stability of a class of discrete epidemic models. (English) Zbl 1216.92055

Summary: We investigate the permanence of a system and give a sufficient condition for the endemic equilibrium to be globally asymptotically stable, which are the remaining problems in our previous paper [G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics in the presence of an infection. Discrete Dyn. Nat. Soc. 2009, Article ID 143019 (2009; Zbl 1177.39014).

MSC:

92D30 Epidemiology
39A30 Stability theory for difference equations
39A10 Additive difference equations

Citations:

Zbl 1177.39014
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Crisci, M. R.; Kolmanovskii, V. B.; Russo, E.; Vecchio, A., Boundedness of discrete Volterra equations, J. Math. Anal. Appl., 211, 106-130 (1997) · Zbl 0882.65134
[2] Elaydi, S. N., An Introduction to Difference Equations (1996), Springer-Verlag · Zbl 0840.39002
[3] Enatsu, Y.; Nakata, Y.; Muroya, Y., Global stability for a class of discrete SIR epidemic models, Math. Biosci. Eng., 7, 347-361 (2010) · Zbl 1259.34064
[4] Freedman, H. I.; Tang, M. X.; Ruan, S. G., Uniform persistence of flows near a closed positively invariant set, J. Dynam. Differential Equations, 6, 583-600 (1994) · Zbl 0811.34033
[5] Guo, H.; Li, M. Y., Global dynamics of a stage progression model for infectious disease, Math. Biosci. Eng., 3, 513-525 (2006) · Zbl 1092.92040
[6] Guo, H.; Li, M. Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14, 259-284 (2006) · Zbl 1148.34039
[7] Hethcote, H. W., The mathematics of infections diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[8] G. Izzo, Y. Muroya, A. Vecchio, A general discrete time model of population dynamics in the presence of an infection, Discrete Dyn. Nat. Soc. (2009), Article ID 143019, 15 pages. doi:10.1155/2009/143019; G. Izzo, Y. Muroya, A. Vecchio, A general discrete time model of population dynamics in the presence of an infection, Discrete Dyn. Nat. Soc. (2009), Article ID 143019, 15 pages. doi:10.1155/2009/143019 · Zbl 1177.39014
[9] Izzo, G.; Vecchio, A., A discrete time version for models of population dynamics in the presence of an infection, J. Comput. Appl. Math., 210, 210-221 (2007) · Zbl 1131.92054
[10] S. Jang, S.N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives, MTBI Cornell University Technical Report, 92 (2004).; S. Jang, S.N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives, MTBI Cornell University Technical Report, 92 (2004). · Zbl 1076.92047
[11] McCluskey, C. C., Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonlinear Anal. RWA., 11, 55-59 (2010) · Zbl 1185.37209
[12] McCluskey, C. C., Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11, 3106-3109 (2010) · Zbl 1197.34166
[13] Y. Muroya, Y. Enatsu, G. Izzo, A. Vecchio, Global stability for a discrete SIR epidemic model with latency spreading in a heterogeneous host population (submitted for publication).; Y. Muroya, Y. Enatsu, G. Izzo, A. Vecchio, Global stability for a discrete SIR epidemic model with latency spreading in a heterogeneous host population (submitted for publication). · Zbl 1252.92049
[14] Ramani, A.; Carstea, A. S.; Willox, R.; Grammaticos, B., Oscillating epidemic: a discrete-time model, Physica A, 333, 278-292 (2004)
[15] Sekiguchi, M., Permanence of some discrete epidemic models, Int. J. Biomath., 2, 443-461 (2009) · Zbl 1342.92281
[16] Sekiguchi, M.; Ishiwata, E., Global dynamics of a discretized SIRS epidemic model with time delay, J. Math. Anal. Appl., 371, 195-202 (2010) · Zbl 1193.92081
[17] Thieme, H. R., Mathematics in Population Biology (2003), Princeton University Press: Princeton University Press Princeton · Zbl 1054.92042
[18] van den Driessche, P.; Wang, L.; Zou, X., Modeling disease with latency and relapse, Math. Biosci. Eng., 4, 205-219 (2007) · Zbl 1123.92018
[19] Wang, L.; Li, M. Y.; Kirschner, D., Mathematical analysis of the global dynamics of a model for HTLV-1 infection and ATL progression, Math. Biosci., 179, 207-217 (2002) · Zbl 1008.92026
[20] Wang, W., Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15, 423-428 (2002) · Zbl 1015.92033
[21] Yuan, Z.; Zou, X., Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population, Nonlinear Anal. RWA, 11, 3479-3490 (2010) · Zbl 1208.34134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.