×

Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves. (English) Zbl 1216.11101

From the text: In 1922, T. Nagell [Abh. Math. Semin. Univ. Hamb. 1, 140–150 (1922; JFM 48.0170.03)] proved that for any integer \(m\), there exist infinitely many imaginary quadratic number fields with class number divisible by \(m\). This result has since been reproved by a number of different authors. Nearly fifty years later, working independently, Yamamoto and Weinberger extended Nagell’s class number divisibility result to real quadratic fields and Uchida proved the analogous result for cubic cyclic fields. The class number divisibility problem for number fields of arbitrary degree was resolved in 1984 by T. Azuhata and H. Ichimura [J. Fac. Sci., Univ. Tokyo, Sect. I A 30, 579–585 (1984; Zbl 0532.12006)]. In fact, they proved that for any integers \(m, n > 1\) and any nonnegative integers \(r_1, r_2\), with \(r_1 + 2r_2 = n\), there exist infinitely many number fields \(k\) of degree \(n = [k : \mathbb Q]\) with \(r_1\) real places and \(r_2\) complex places such that (1.1) \(\text{rk}_m \text{Cl}(k) \geq r_2\), where \(\text{Cl}(k)\) is the ideal class group of \(k\) and \(\text{rk}_m \text{Cl}(k)\) denotes the largest integer such that \((\mathbb Z/m\mathbb Z)\text{rk}_m \text{Cl}(k)\) is a subgroup of \(\text{Cl}(k)\). The right-hand of (1.1) was later improved to \(r_2 + 1\) by S. Nakano [Tokyo J. Math. 6, 389–395 (1983; Zbl 0529.12005), J. Reine Angew. Math. 358, 61–75 (1985; Zbl 0559.12004)]. Choosing \(r_2\) as large as possible, we thus obtain, for any \(m\), infinitely many number fields \(k\) of degree \(n > 1\) with (1.2) \(\text{rk}_m \text{Cl}(k)\geq \lfloor\frac n2\rfloor +1\), where \(\lfloor\cdot\rfloor\) denotes the greatest integer function. Furthermore, improving on previous work of Ishida and Ichimura, Nakano proved the existence of infinitely many number fields \(k\) of degree \(n > 1\) with (1.3) \(\text{rk}_m \text{Cl}(k)\geq n\).
Recently, progress has been made on obtaining quantitative results on counting the number fields in the above results. Let \[ N_{m,n,s}(X) = \#\{k\subset\overline{\mathbb Q}\mid [k:\mathbb Q] = n,\quad \text{rk}_m \text{Cl}(k)\geq s,\quad |\text{Disc}_{k/\mathbb Q}| < X\}. \]
Up to now general results have been proven only for \(s=1\) (of course, for \(m\) square-free, \(N_{m,n,1}(X)\) just counts number fields of degree \(n\) with class number divisible by \(m\)). The first such result, due to Murty, is that \(N_{m,2,1}(X)\gg X^{\frac 12+ \frac 1m}\). He also proved a result for real quadratic fields. Soundararajan improved Murty’s result to \(N_{m,2,1}(X)\gg X^{\frac 12+ \frac 2m +\varepsilon}\) if \(m\equiv 0 \bmod 4\) and \(N_{m,2,1}(X)\gg X^{\frac 12+ \frac 3{m+2} +\varepsilon}\) if \(m\equiv 2 \bmod 4\), \(m\neq 2\). For cubic fields, Hernández and Luca proved \(N_{m,3,1}(X)\gg X^{\frac 1{6m}}\). Yu. F. Bilu and F. Luca [J. Reine Angew. Math. 578, 79–91 (2005; Zbl 1072.11084)] improved on this, as the special case \(n=3\), giving the first result for every \(n>1\), (1.4) \(N_{m,n,1}(X)\gg X^{\frac 1{2m(n-1)}}\).
In this paper the authors prove the following. Theorem 1.1. Let \(m, n > 1\) be positive integers. Let \(s_1 =\lfloor\frac n2\rfloor\), \(s_2 =\lceil\lfloor\frac{n+1}2\rfloor+\frac n{m-1}-m\rceil\), where \(\lceil\cdot\rceil\) denotes the least integer functions, respectively.
Then \[ N_{m,n,s_1}(X)\gg \frac{X^{\frac 1{m(n-1)}}}{\log X} \tag{1.5}, \]
\[ N_{m,n,s_2}(X)\gg \frac{X^{\frac 1{m(n+1)n-1}}}{\log X}\tag{1.5}, \] if \(n>(m-1)^2\).

MSC:

11R29 Class numbers, class groups, discriminants
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11R09 Polynomials (irreducibility, etc.)
11R21 Other number fields
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML Link

References:

[1] N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields. Pacific J. Math. 5 (1955), no. 3, 321-324. · Zbl 0065.02402
[2] T. Azuhata and H. Ichimura, On the divisibility problem of the class numbers of algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 579-585. · Zbl 0532.12006
[3] F. Beukers and S. Tengely, An implementation of Runge’s method for Diophantine equations. Preprint.
[4] Y. F. Bilu and F. Luca, Divisibility of class numbers: enumerative approach. J. Reine Angew. Math. 578 (2005), 79-91. · Zbl 1072.11084
[5] E. Bombieri, On Weil’s “théorème de décomposition”. Amer. J. Math. 105 (1983), no. 2, 295-308. · Zbl 0516.12009
[6] A. Brumer, Ramification and class towers of number fields. Michigan Math. J. 12 (1965), no. 2, 129-131. · Zbl 0136.02701
[7] A. Brumer and M. Rosen, Class number and ramification in number fields. Nagoya Math. J. 23 (1963), 97-101. · Zbl 0128.26204
[8] K. Chakraborty and R. Murty, On the number of real quadratic fields with class number divisible by 3. Proc. Amer. Math. Soc. 131 (2003), no. 1, 41-44 (electronic). · Zbl 1024.11073
[9] S. D. Cohen, The distribution of Galois groups and Hilbert’s irreducibility theorem. Proc. London Math. Soc. (3) 43 (1981), no. 2, 227-250. · Zbl 0484.12002
[10] R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 421-443. · Zbl 0819.12003
[11] R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. II. (On a conjecture of Schinzel). Acta Arith. 72 (1995), no. 3, 201-210. · Zbl 0832.12001
[12] S. Hernández and F. Luca, Divisibility of exponents of class groups of pure cubic number fields. High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 237-244. · Zbl 1090.11070
[13] P. Humbert, Sur les nombres de classes de certains corps quadratiques. Comment. Math. Helv. 12 (1940), no. 1, 233-245. · Zbl 0023.10401
[14] H. Ichimura, On \(2\)-rank of the ideal class groups of totally real number fields. Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 7, 329-332. · Zbl 0514.12015
[15] M. Ishida, On \(2\)-rank of the ideal class groups of algebraic number fields. J. Reine Angew. Math. 273 (1975), 165-169. · Zbl 0299.12009
[16] S. Kuroda, On the class number of imaginary quadratic number fields. Proc. Japan Acad. 40 (1964), 365-367. · Zbl 0128.03404
[17] A. Levin, Vojta’s inequality and rational and integral points of bounded degree on curves. Compos. Math. 143 (2007), no. 1, 73-81. · Zbl 1169.11026
[18] F. Luca, A note on the divisibility of class numbers of real quadratic fields. C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 3, 71-75. · Zbl 1100.11038
[19] R. Murty, Exponents of class groups of quadratic fields. Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 229-239. · Zbl 0993.11059
[20] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150. · JFM 48.0170.03
[21] T. Nagell, Collected papers of Trygve Nagell. Vol. 1. Queen’s Papers in Pure and Applied Mathematics, vol. 121, Queen’s University, Kingston, ON, 2002. · Zbl 0997.01010
[22] S. Nakano, On the construction of certain number fields. Tokyo J. Math. 6 (1983), no. 2, 389-395. · Zbl 0529.12005
[23] S. Nakano, On ideal class groups of algebraic number fields. J. Reine Angew. Math. 358 (1985), 61-75. · Zbl 0559.12004
[24] P. Roquette and H. Zassenhaus, A class of rank estimate for algebraic number fields. J. London Math. Soc. 44 (1969), 31-38. · Zbl 0169.38001
[25] J.-P. Serre, Lectures on the Mordell-Weil theorem, third ed. Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997. · Zbl 0676.14005
[26] K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields. J. London Math. Soc. (2) 61 (2000), no. 3, 681-690. · Zbl 1018.11054
[27] V. G. Sprindžuk, Reducibility of polynomials and rational points on algebraic curves. Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1327-1330. · Zbl 0447.12010
[28] K. Uchida, Class numbers of cubic cyclic fields. J. Math. Soc. Japan 26 (1974), no. 3, 447-453. · Zbl 0281.12007
[29] P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. J. Amer. Math. Soc. 5 (1992), no. 4, 763-804. · Zbl 0778.11037
[30] P. J. Weinberger, Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5 (1973), no. 3, 237-241. · Zbl 0287.12007
[31] Y. Yamamoto, On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7 (1970), 57-76. · Zbl 0222.12003
[32] G. Yu, A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97 (2002), no. 1, 35-44. · Zbl 1036.11057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.