×

Construction of discrete kinetic models with given invariants. (English) Zbl 1214.82087

Summary: We consider the general problem of the construction of discrete kinetic models (DKMs) with given conservation laws. This problem was first stated by Gatignol in connection with discrete models of the Boltzmann equation (BE) and it has been addressed in the last decade by several authors. Even though a practical criterion for the non-existence of spurious conservation laws has been devised, and a method for enlarging existing physical models by new velocity points without adding non-physical invariants has been proposed, a general algorithm for the construction of all normal (physical) discrete models with assigned conservation laws, in any dimension and for any number of points, is still lacking in the literature. We introduce the most general class of discrete kinetic models and obtain a general method for the construction and classification of normal DKMs. In particular, it is proved that for any given dimension \(d \geq 2\) and for any sufficiently large number \(N\) of velocities (for example, \(N \geq 6\) for the planar case \(d =2\)) there exists just a finite number of distinct classes of DKMs. We apply the general method in the particular cases of discrete velocity models (DVMs) of the inelastic BE and elastic BE. Using our general approach to DKMs and our results on normal DVMs for a single gas, we develop a method for the construction of the most natural (from physical point of view) subclass of normal DVMs for binary gas mixtures. We call such models supernormal models (SNMs) (they have the property that by isolating the velocities of single gases involved in the mixture, we also obtain normal DVMs).

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arkeryd, L.: On the Boltzmann equation, part II: the full initial value problem. Arch. Ration. Mech. Anal. 45, 17–34 (1972) · Zbl 0245.76060
[2] Arkeryd, L., Cercignani, C.: On a functional equation arising in the kinetic theory of gases. Rend. Mat. Acc. Lincei 1, 139–149 (1990) · Zbl 0703.76062
[3] Bobylev, A., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I Math. 320, 639–644 (1995) · Zbl 0834.76078
[4] Bobylev, A.V., Cercignani, C.: Discrete velocity models for mixtures. J. Stat. Phys. 91, 327–342 (1998) · Zbl 0917.76075 · doi:10.1023/A:1023052423760
[5] Bobylev, A.V., Cercignani, C.: Discrete velocity models without non-physical invariants. J. Stat. Phys. 97, 677–686 (1999) · Zbl 0958.82041 · doi:10.1023/A:1004615309058
[6] Cabannes, H.: The discrete Boltzmann equation. Lecture notes given at the University of California at Berkeley (1980), revised jointly with R. Gatignol and L.-S. Luo, 2003 · Zbl 1140.82323
[7] Carleman, T.: Problème Mathématiques dans la Théorie Cinétique des Gaz. Almqvist-Wiksell, Uppsala (1957)
[8] Cercignani, C.: Sur des critère d’existence globale en théorie cinétique discrète. C. R. Acad. Sci. Paris 301, 89–92 (1985) · Zbl 0622.76080
[9] Cercignani, C., Cornille, H.: Shock waves for discrete velocity gas mixture. J. Stat. Phys. 99, 115–140 (2000) · Zbl 0972.82072 · doi:10.1023/A:1018692522765
[10] Cercignani, C., Cornille, H.: Large size planar discrete velocity models for gas mixtures. J. Phys. A: Math. Gen. 34, 2985–2998 (2001) · Zbl 0995.82512 · doi:10.1088/0305-4470/34/14/306
[11] Cornille, H., Cercignani, C.: A class of planar discrete velocity models for gas mixtures. J. Stat. Phys. 99, 967–991 (2000) · Zbl 0959.82023 · doi:10.1023/A:1018603831215
[12] Cornille, H., Cercignani, C.: On a class of planar discrete velocity models for gas mixtures. In: Ciancio, V., Donato, A., Oliveri, F., Rionero, S. (eds.) Proceedings ”WASCOM-99” 10th Conference on Waves and Stability in Continuous Media. World Scientific, Singapore (2001) · Zbl 0995.82512
[13] Gatignol, R.: Théorie Cinétique des Gaz à Répartition Discrète de Vitesses. Springer, New York (1975)
[14] Palczewski, A., Schneider, J., Bobylev, A.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997) · Zbl 0895.76083 · doi:10.1137/S0036142995289007
[15] Platkowski, T., Illner, R.: Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory. SIAM Rev. 30, 213–255 (1988) · Zbl 0668.76087 · doi:10.1137/1030045
[16] Vedenyapin, V.V.: Velocity inductive construction for mixtures. Transport. Theory Stat. Phys. 28, 727–742 (1999) · Zbl 0954.35139 · doi:10.1080/00411459908214525
[17] Vedenyapin, V.V., Orlov, Yu.N.: Conservation laws for polynomial Hamiltonians and for discrete models for Boltzmann equation. Teor. Math. Phys. 121, 1516–1523 (1999) · Zbl 0971.81021 · doi:10.1007/BF02557222
[18] Bobylev, A.V., Vinerean, M.C.: Construction and classification of discrete kinetic models without spurious invariants. Riv. Mat. Univ. Parma 7, 1–80 (2007) · Zbl 1143.82023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.