×

Supervisory predictive control and on-line set-point optimization. (English) Zbl 1211.93036

Summary: The subject of this paper is to discuss selected effective known and novel structures for advanced process control and optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncertainty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations for nonlinear control, and a novel algorithm based on fast model selection to cope with process uncertainty. Issues of cooperation between MPC algorithms and on-line steady-state set-point optimization are next discussed, including integrated approaches. Finally, a recently developed two-purpose supervisory predictive set-point optimizer is discussed, designed to perform simultaneously two goals: economic optimization and constraints handling for the underlying unconstrained direct controllers.

MSC:

93B18 Linearizations
93C10 Nonlinear systems in control theory
93B52 Feedback control
93C41 Control/observation systems with incomplete information
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Allgöwer, F., Badgwell, T., Qin, J., Rawlings, J. and Wright, S. (1999). Nonlinear predictive control and moving horizon estimation-An introductory overview, in P. Frank , Advances in Control-Highlights of ECC’99, Springer, London, Chapter 12.
[2] Bemporad, A. (1998). Reference governor for constrained nonlinear systems, IEEE Transactions on Automatic Control 43(3): 415-419. · Zbl 0906.93024 · doi:10.1109/9.661611
[3] Bemporad, A. and Morari, M. (1999). Robust model predictive control: A survey, in A. Garulli, A. Tesi and A. Vicino , Robustness in Identification and Control, Lecture Notes in Control and Information Sciences, Vol. 245, Springer, New York, NY. · Zbl 0979.93518
[4] Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E. (2002). The explicit linear-quadratic regulator for constrained systems, Automatica 38(1): 3-20. · Zbl 0999.93018 · doi:10.1016/S0005-1098(01)00174-1
[5] Blevins, T. L., McMillan, G. K., Wojsznis, W. K. and Brown, M. W. (2003). Advanced Control Unleashed, ISA Society, Research Triangle Park, NC.
[6] Brdys, M. A. and Chang, T. (2001). Robust model predictive control of chlorine residuals in water systems based on a state space modeling, in B. Ulanicki, B. Coulbeck and J. Rance , Water Software Systems: Theory and Applications, Research Studies Press, Baldock.
[7] Brdys, M. and Tatjewski, P. (2005). Iterative Algorithms for Multilayer Optimizing Control, Imperial College Press/World Scientific, London/Singapore. · Zbl 1083.93001
[8] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer, London.
[9] Deinrych, P., Szumski, A., Brdys, M. A., Grochowski, M. and Szczygielski, P. (2007). Softly switched robustly feasible mpc for constrained linear systems under set bounded uncertainty, Proceedings of the 11th IFAC/IFORS/IMACS/ IFIP Symposium on Large Scale Complex Systems Theory and Applications, Gdańsk, Poland, (on CD-ROM).
[10] Diehl, M. and Bjornberg, J. (2004). Robust dynamic programming for minmax model predictive control of constrained uncertain systems, IEEE Transactions on Automatic Control 49(12): 2253-2257. · Zbl 1365.93131 · doi:10.1109/TAC.2004.838489
[11] DoyleIII, F. J., Ogunnaike, B. A. and Pearson, R. K. (1995). Non-linear model-based control using second-order Volterra models, Automatica 31(5): 669-714.
[12] Feng, G. and Lozano, R. (1999). Adaptive Control Systems, Newness, Oxford.
[13] Findeisen, W. (1997). Control Structures for Complex Processes, Warsaw University of Technology Press, Warsaw, (in Polish).
[14] Findeisen, W., Bailey, F. N., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination in Hierarchical Systems, J. Wiley & Sons, Chichester/New York, NY/Brisbane/Toronto. · Zbl 0534.93002
[15] Goodwin, G. C., Graebe, S. F. and Salgado, M. E. (2001). Control System Design, Prentice Hall, Upper Saddle River, NJ.
[16] Haseltine, E. L. and Rawlings, J. B. (2005). Critical evaluation of extended Kalman filtering and moving horizon estimation, Industrial and Engineering Chemistry Research 44(5): 2451-2460. · doi:10.1021/ie034308l
[17] Jeong, S. C. and Park, P. (2002). Output-feedback robust adaptive receding horizon controller design, Proceedings of the American Control Conference 2002, Anchorage, AK, USA.
[18] Kassmann, D. E., Badgwell, T. and Hawkins, R. (2000). Robust steady-state target calculation for model predictive control, AIChE Journal 46(5): 1007-1024. · doi:10.1002/aic.690460513
[19] Kerrigan, E. and Maciejowski, J. (2004). Feedback minmax model predictive control using a single linear program: Robust stability and the explicit solution, International Journal of Robust and Nonlinear Control 14(4): 395-413. · Zbl 1051.93034 · doi:10.1002/rnc.889
[20] Ławryńczuk, M., Marusak, P. and Tatjewski, P. (2007). Multilevel and integrated structures for predictive control and economic optimisation, Proceedings of the 11th IFAC/IFORS/IMACS/ IFIP Symposium on Large Scale Complex Systems Theory and Applications, Gdańsk, Poland, (on CD-ROM).
[21] Ławryńczuk, M., Marusak, P. and Tatjewski, P. (2008). Cooperation of model predictive control with steady-state economic optimisation, Control and Cybernetics 37(1): 133-158. · Zbl 1153.93411
[22] Ławryńczuk, M., Marusak, P. and Tatjewski, P. (2009a). Integrated predictive optimizer and constraint supervisor for processes with basic feedback control, Proceedings of the European Control Conference 2009, Budapest, Hungary, pp. 3359-3364.
[23] Ławryńczuk, M., Marusak, P. and Tatjewski, P. (2009b). On cooperation of set-point optimisation and predictive control based on hammerstein models, Proceedings of the 7th Workshop on Advanced Control and Diagnosis ACD2009, Zielona Góra, Poland, (on CD-ROM).
[24] Ławryńczuk, M. and Tatjewski, P. (2010). Nonlinear predictive control based on neural multi-models, International Journal of Applied Mathematics and Computer Science 20(1): 7-21, DOI: 10.2478/v10006-010-001-y. · Zbl 1300.93069 · doi:10.2478/v10006-010-0001-y
[25] Lee, J. and Yu, Z. (1997). Worst-case formulations of model predictive control for systems with bounded parameters, Automatica 33(5): 763-781. · Zbl 0878.93025 · doi:10.1016/S0005-1098(96)00255-5
[26] Lefkowitz, I. (1966). Multilevel approach applied to control system design, Journal of Basic Engineering, Transactions of ASME 88(Ser. B2): 392-398. · doi:10.1115/1.3645868
[27] Maciejowski, J. (2002). Predictive Control, Prentice Hall, Harlow. · Zbl 0978.93002
[28] Marlin, T. E. (1995). Process Control, McGraw-Hill, New York, NY.
[29] Marusak, P. and Tatjewski, P. (2008). Actuator fault tolerance in control systems with predictive constrained set-point optimizers, International Journal of Applied Mathematics and Computer Science 18(4): 539-551, DOI: 10.2478/v10006-008-0047-2. · Zbl 1155.93357 · doi:10.2478/v10006-008-0047-2
[30] Marusak, P. and Tatjewski, P. (2009). Effective dual-mode fuzzy dmc algorithms with on-line quadratic optimization and guaranteed stability, International Journal of Applied Mathematics and Computer Science 19(1): 127-141, DOI: 10.2478/v10006/009-0012-8. · Zbl 1169.93358 · doi:10.2478/v10006-009-0012-8
[31] Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789-814. · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[32] Mesarović, M. D., Macko, D. and Takahara, Y. (1970). Theory of Hierarchical, Multilevel Systems, Academic Press, New York, NY. · Zbl 0206.14501
[33] Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-764. · doi:10.1016/S0967-0661(02)00186-7
[34] Rao, V., Rawlings, J. B. and Mayne, D. Q. (2003). Constrained state estimation for nonlinear discrete-time systems: Stability and moving horiozon approximations, IEEE Transactions on Automatic Control 48(2): 246-258. · Zbl 1364.93781 · doi:10.1109/TAC.2002.808470
[35] Roberts, P. (1979). An algorithm for steady-state optimization and parameter estimation, International Journal of Systems Science 10: 719-734. · Zbl 0406.93024 · doi:10.1080/00207727908941614
[36] Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC.
[37] Saez, D., Cipriano, A. and Ordys, A. W. (2002). Optimisation of Industrial Processes at Supervisory Level: Application to Control of Thermal Power Plants, Springer, London.
[38] Scokaert, P. and Mayne, D. (1998). Minmax feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control 43(8): 1136-1142. · Zbl 0957.93034 · doi:10.1109/9.704989
[39] Skogestad, S. (2000). Plantwide control: the search for the self-optimizing control structure, Journal of Process Control 10(5): 487-507. · doi:10.1016/S0959-1524(00)00023-8
[40] Skogestad, S. (2004). Control structure design for complex chemical plants, Computers and Chemical Engineering 28(1-2): 219-234. · doi:10.1016/j.compchemeng.2003.08.002
[41] Sztyber, K. (2008). Predictive Control Algorithms under Uncertainty, Ph.D. thesis, Warsaw University of Technology, Warsaw, (in Polish).
[42] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer, London. · Zbl 1134.93037
[43] Tatjewski, P. (2008). Advanced control and on-line process optimization in multilayer structures, Annual Reviews in Control 32(1): 71-85. · doi:10.1016/j.arcontrol.2008.03.003
[44] Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7-26. · Zbl 1334.93068
[45] Tatjewski, P., Ławryńczuk, M. and Marusak, P. (2006). Linking nonlinear steady-state and target set-point optimization for model predictive control, Proceedings of the Control Conference 2006, Glasgow, UK, (on CD-ROM).
[46] Tondell, P., Johansen, T. A. and Bemporad, A. (2003). An algotithm for multiparametric quadratic programming and explicit mpc solutions, Automatica 39(3): 489-497. · Zbl 1019.93019 · doi:10.1016/S0005-1098(02)00250-9
[47] Tran, V. N. and Brdys, M. A. (2009). Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems, Artificial Neural Networks ICANN 2009, Lecture Notes in Computer Science, Vol. 5769, Springer, Berlin/Heidelberg.
[48] Wang, Y. (2002). Robust Model Predictive Control, Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.
[49] Zanin, A., de Gouvea, M. T. and Odloak, D. (2002). Integrating real-time optimization into model predictive controller of the FCC system, Control Engineering Practice 10(8): 819-831. · doi:10.1016/S0967-0661(02)00033-3
[50] Zheng, A., Mahajanam, R. V. and Douglas, J. M. (1999). Hierarchical procedure for plantwide control system synthesis, AIChE Journal 45(6): 1255-1265. · doi:10.1002/aic.690450611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.