×

\(p\)-adic-representations of \(\text{GL}_2(L)\) and derived categories. (Représentations \(p\)-adiques de \(\text{GL}_2(L)\) et catégories dérivées.) (French. English summary) Zbl 1210.11066

The article concerns the interesting correspondence between \(p\)-adic two-dimensional representations \(\rho\) of the Galois group \(G_p\) of \(\mathbb{Q}_p\), and unitary representations \(\pi\) of \(\text{GL}(2,\mathbb Q_p)\) on \(p\)-adic Banach spaces. Breuil associated to a semistable non-cristalline two-dimensional \(\rho\) a locally analytic \(\pi\). An invariant \(\mathfrak{L}\) appears. It does not appear in the “classical” (complex) Langlands correspondence. The unitary completion of the \(\pi\) is admissible and nonzero, and its mod \(p\) reduction is compatible with the mod \(p\) correspondence defined by Breuil.
The main result of this paper is that on considering the space of morphisms, in a suitable derived category, between the dual of \(\pi\) and the de Rham complex of Drinfeld’s half-plane – a rank two admissible filtered \((\varphi,N)\)-module – one finds the Fontaine module associated with the original \(\rho\). The work extends from \(\mathbb Q_p\) to a finite extension \(L\). Then the locally \(\mathbb Q_p\)-analytic representations \(\pi\) of \(\text{GL}(2,L)\) become parametrized not by a single \(\mathfrak{L}\), but by \((\mathfrak{L}_\sigma)\), where \(\sigma\) ranges over the embeddings of \(L\) in the algebraic closure of \(\mathbb Q_p\). The author explains that the \(\pi\) obtained might not be the best objects when \(L\not=\mathbb{Q}_p\). For example, it is not clear that their unitary completion is admissible. But he hopes they are subobjects of the correct representations.

MSC:

11F85 \(p\)-adic theory, local fields
11F33 Congruences for modular and \(p\)-adic modular forms
22E50 Representations of Lie and linear algebraic groups over local fields
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Berger, Représentations modulaires de GL2(\(\mathbb{Q}\)p) et représentations galoisiennes de dimension 2, à paraître à Astérisque, Représentations p-adiques de groupes p-adiques II.
[2] A. Borel and N. R. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, 1980. · Zbl 0443.22010
[3] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL2(\(\mathbb{Q}\)p). I., Compositio Mathematica 138 (2003), 165–188. · Zbl 1044.11041 · doi:10.1023/A:1026191928449
[4] C. Breuil, Invariant L et série spéciale p-adique, Annales Scientifiques de l’Ecole Normale Supérieure 37 (2004), 559–610.
[5] C. Breuil et M. Emerton, Représentation ordinaires de GL2(\(\mathbb{Q}\)p) et compatibilité localglobal, à paraître à Astérisque, Représentations p-adiques de groupes p-adiques III, 2005.
[6] C. Breuil et A. Mézard, Représentations semi-stables de GL2(\(\mathbb{Q}\)p), demi-plan p-adique et réduction modulo p, à paraître à Astérisque, Représentations p-adiques de groupes p-adiques III
[7] C. Breuil et V. Paskunas, Toward a modulo p Langlands correspondence for GL2, prépublication, 2007.
[8] W. Casselman et D. Wigner, Continuous cohomology and a conjecture of serre, Inventiones Mathematicae 25 (1974), 199–211. · Zbl 0297.20060
[9] R. Coleman et A. Iovita, Hidden structures on semistable curves, à paraître à Astérisque, Représentations p-adiques de groupes p-adiques III.
[10] P. Colmez, Une correspondance de Langlands p-adique pour les représentations semistables de dimension 2, à paraître à Astérisque, Représentations p-adiques de groupes p-adiques II, 2004.
[11] J.-F. Dat, Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Inventiones Mathematicae 169 (2007), 75–152. · Zbl 1180.22020
[12] J. F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Annales Scientifiques de l’Ecole Normale Supérieure (4) 39 (2006), 1–74. · Zbl 1141.22004 · doi:10.1016/j.ansens.2005.11.002
[13] J. Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII. Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974.
[14] J. D. Dixon, M. P. F. du Sautoy, A. Mann et D. Segal, Analytic Pro-p-groups, London Mathematical Society Lecture Note Series, Vol. 157, Cambridge University Press, Cambridge, 1991. · Zbl 0744.20002
[15] J.-M. Fontaine, Représentations p-adiques semi-stables, Astérisque 223 (1994), 113–184.
[16] H. Frommer, The locally analytic principal series of split reductive groups, prépublication, Münster, 2003.
[17] E. Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel0d’s symmetric space, Journal of Algebraic Geometry 14 (2005), 391–437. · Zbl 1084.14021
[18] J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, Berlin, 1975. · Zbl 0325.20039
[19] J. C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, Vol. 131, Academic Press, New York, 1987. · Zbl 0654.20039
[20] J. Kohlhaase, The cohomology of locally analytic representations, prépublication, Münster, 2007.
[21] J. Kohlhaase, Invariant distributions on p-adic analytic groups, Duke Mathematical Journal 137 (2007), 19–62. · Zbl 1133.11066 · doi:10.1215/S0012-7094-07-13712-8
[22] C. T. Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, Heft 23, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., Vol. 23, Univ. Münster, 1999, x+111 pp.
[23] S. Orlik et M. Strauch, On the irreducibility of locally analytic principal series representations, prépublication, 2006, Representation Theory, to appear. · Zbl 1247.22018
[24] D. Prasad, Locally algebraic representations of p-adic groups, Representation Theory 5 (2001), 125–128, Appendix to U(g)-finite locally analytic representations.
[25] T. Schmidt, Auslander regularity of p-adic distribution algebras, Representation Theory 12 (2008), 37–57. · Zbl 1142.22010 · doi:10.1090/S1088-4165-08-00323-3
[26] P. Schneider, Nonarchimedean Functional Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. · Zbl 0998.46044
[27] P. Schneider et U. Stuhler, The cohomology of p-adic symmetric spaces, Inventiones Mathematicae 105 (1991), 44–122. · Zbl 0751.14016 · doi:10.1007/BF01232257
[28] P. Schneider et J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with application to GL2, Journal of the American Mathematical Society 15 (2002), 443–468. · Zbl 1028.11071 · doi:10.1090/S0894-0347-01-00377-0
[29] P. Schneider et J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Inventiones Mathematicae 153 (2003), 145–196. · Zbl 1028.11070 · doi:10.1007/s00222-002-0284-1
[30] E. de Shalit, The p-adic monodromy-weight conjecture for p-adically uniformized varieties, Compositio Mathematica 141 (2005), 101–120. · Zbl 1087.14019 · doi:10.1112/S0010437X04000594
[31] C. A. Weibel, An Introduction to homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.