×

A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem. (English) Zbl 1209.94027

Summary: Based on the one-parameter generalization of Shannon-Khinchin (SK) axioms presented by one of the authors, and utilizing a tree-graphical representation, we have developed for the first time a two-parameter generalization of the SK axioms in accordance with the two-parameter entropy introduced by Sharma, Taneja, and Mittal. The corresponding unique theorem is also proved. It is found that our two-parameter generalization of Shannon additivity is a natural consequence from the Leibniz product rule of the two-parameter Chakrabarti-Jagannathan difference operator.

MSC:

94A17 Measures of information, entropy
39A70 Difference operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Tsallis, C.; Mendes, R. S.; Plastino, A. R., Physica A, 261, 534 (1998)
[2] Kaniadakis, G.; Lissia, M.; Rapisarda, A., Proceedings of the International School and Workshop on Nonextensive Thermodynamics and Physical Applications (NEXT2001). Proceedings of the International School and Workshop on Nonextensive Thermodynamics and Physical Applications (NEXT2001), Physica A, 305, 1-2 (2001)
[3] Kaniadakis, G.; Lissia, M., Proceedings of the 2nd Sardinian International Conference on News and Expectations in Thermostatistics (NEXT2003). Proceedings of the 2nd Sardinian International Conference on News and Expectations in Thermostatistics (NEXT2003), Physica A, 340, 1-3 (2004)
[4] Gell-Mann, M.; Tsallis, C., Nonextensive Entropy: Interdisciplinary Applications (2004), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 1127.82004
[5] Naudts, J., Physica A, 340, 32 (2004)
[6] Sharma, B. D.; Taneja, L. J., Metrika, 22, 205 (1975)
[7] Mittal, D. P., Metrika, 22, 35 (1975)
[8] Kaniadakis, G.; Lissia, M.; Scarfone, A. M., Physica A, 340, 41 (2004)
[9] Kaniadakis, G.; Lissia, M.; Scarfone, A. M., Phys. Rev. E, 71, 046128 (2005)
[10] Tsallis, C., J. Stat. Phys., 52, 479 (1998)
[11] Abe, S., Phys. Lett. A, 224, 326 (1997)
[12] Kaniadakis, G., Physica A, 296, 405 (2001)
[13] Kaniadakis, G., Phys. Rev. E, 66, 056125 (2002)
[14] Scarfone, A. M.; Wada, T., Phys. Rev. E, 72, 026123 (2005)
[15] Scarfone, A. M., Physica A, 365, 63 (2006)
[16] Johal, R. S., Phys. Rev. E, 58, 4147 (1998)
[17] Borges, E. P.; Roditi, I., Phys. Lett. A, 246, 399 (1998)
[18] Chakrabarti, R.; Jagannathan, R., J. Phys. A: Math. Gen., 24, L711 (1991) · Zbl 0735.17026
[19] Shannon, C. E., Bell Syst. Tech. J., 27, 379 (1948)
[20] Khinchin, A. I., Mathematical Foundations of Information Theory (1957), Dover: Dover New York · Zbl 0088.10404
[21] dos Santos, R. J.V., J. Math. Phys., 38, 4104 (1997)
[22] Abe, S., Phys. Lett. A, 271, 74 (2000)
[23] Suyari, H., IEEE Trans. Inf. Theory, 50, 1783 (2004)
[24] Curado, E. M.F.; Tsallis, C., J. Phys. A: Math. Gen., 24, L69 (1991)
[25] Havrda, J. H.; Charvat, F., Kybernetika, 3, 30 (1967)
[26] Daróczy, Z., Inform. Control, 16, 36 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.