×

A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. (English) Zbl 1209.65077

Summary: Based on the Adomian decomposition method, a new analytical and numerical treatment is introduced in this research to investigate linear and non-linear singular two-point boundary value problems. The effectiveness of the proposed approach is verified by several linear and non-linear examples.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B05 Linear boundary value problems for ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Janus, J.; Myjak, J., A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal., 23, 8, 953-970 (1994) · Zbl 0819.34016
[2] Palamides, P. K., Monotone positive solutions for singular boundary value problems, J. Comput. Appl. Math., 146, 405-418 (2002) · Zbl 1042.34042
[3] Adomian, G., Solution of the Thomas-Fermi equation, Appl. Math. Lett., 11, 3, 131-133 (1998) · Zbl 0947.34501
[4] Kadalbajoo, M. K.; Aggarwal, V. K., Numerical solution of singular boundary value problems via Chebyshev polynomial and B-spline, Appl. Math. Comput., 160, 851-863 (2005) · Zbl 1062.65077
[5] Jiang, Daqing; Wang, Junyu, On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math., 116, 231-241 (2000) · Zbl 0952.34053
[6] Aziz, T.; Kumar, M., A fourth-order finite-difference method based on non-uniform mesh for a class of singular two-point boundary value problems, J. Comput. Appl. Math., 136, 136-342 (2001) · Zbl 0990.65086
[7] Kumar, M., A fourth-order finite difference method for a class of singular two-point boundary value problems, Appl. Math. Comput., 133, 539-545 (2002) · Zbl 1033.65060
[8] Kumar, M., A new finite difference method for a class of singular two-point boundary value problems, Appl. Math. Comput., 143, 551-557 (2003) · Zbl 1034.65062
[9] Ravi Kanth, A. S.V.; Reddy, Y. N., A numerical method for singular two point boundary value problems via Chebyshev economizition, Appl. Math. Comput., 146, 193-700 (2003) · Zbl 1024.65060
[10] Cen, Zhongdi, Numerical study for a class of singular two-point boundary value problems using Greens functions, Appl. Math. Comput., 183, 10-16 (2006) · Zbl 1105.65339
[11] Yang, Xiaojing, Positive solutions for nonlinear singular boundary value problems, Appl. Math. Comput., 130, 225-234 (2002) · Zbl 1030.34021
[12] Kumar, M., A three-point finite difference method for a class of singular two-point boundary value problems, J. Comput. Appl. Math., 145, 89-97 (2002) · Zbl 1001.65086
[13] Lima, P. M.; Carpentier, M. P., Iterative methods for a singular boundary-value problem, J. Comput. Appl. Math., 111, 173-186 (1999) · Zbl 0942.65082
[14] Rashidinia, J.; Mahmoodi, Z.; Ghasemi, M., Parametric spline method for a class of singular two-point boundary value problems, Appl. Math. Comput., 188, 58-63 (2007) · Zbl 1114.65341
[15] Cui, Minggen; Geng, Fazhan, Solving singular two-point boundary value problem in reproducing kernel space, J. Comput. Appl. Math., 205, 6-15 (2007) · Zbl 1149.65057
[16] Ravi Kanth, A. S.V.; Reddy, Y. N., Cubic spline for a class of singular two-point boundary value problems, Appl. Math. Comput., 170, 733-740 (2005) · Zbl 1103.65086
[17] Ravi Kanth, A. S.V.; Reddy, Y. N., Higher order finite difference method for a class of singular boundary value problems, Appl. Math. Comput., 155, 249-258 (2004) · Zbl 1058.65078
[18] Zhao, Jichao, Highly accurate compact mixed methods for two point boundary value problems, Appl. Math. Comput., 188, 1402-1418 (2007) · Zbl 1119.65074
[19] El-Sayed, S. M., Integral methods for computing solutions of a class of singular two-point boundary value problems, Appl. Math. Comput., 130, 235-241 (2002) · Zbl 1030.34022
[20] Lima, P. M.; Oliveira, A. M., Numerical solution of a singular boundary value problem for a generalized Emden-Fowler equation, Appl. Numer. Math., 45, 389-409 (2003) · Zbl 1027.65105
[21] Adomian, G., Solving Frontier Problems of Physics: the Decomposition Method (1994), Kluwer. Acad: Kluwer. Acad Boston · Zbl 0802.65122
[22] Adomian, G., Explicit solutions of nonlinear partial differential equations, Appl. Math. Comput., 88, 117-126 (1997) · Zbl 0904.35077
[23] Adomian, G., Solutions of nonlinear P.D.E, Appl. Math. Lett., 11, 3, 121-123 (1998) · Zbl 0933.65121
[24] Ebaid, A., A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method, Phys. Lett. A, 372, 5321-5328 (2008) · Zbl 1223.76119
[25] Eldabe, N. T.; Elghazy, E. M.; Ebaid, A., Closed form solution to a second order boundary value problem and its application in fluid mechanics, Phys. Lett. A, 363, 257-259 (2007) · Zbl 1197.35203
[26] Ebaid, A., Exact solutions for the generalized Klein-Gordon equation via a transformation and exp-function method and comparison with Adomian’s method, J. Comput. Appl. Math., 223, 278-290 (2009) · Zbl 1155.65079
[27] Shawagfeh, N. T., Analytic approximate solution for a nonlinear oscillator equation, Comput. Math. Appl., 31, 135-141 (1996) · Zbl 0845.34020
[28] Wazwaz, A. M., A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems, Math. Comput. Simulation, 41, 1237-1244 (2001) · Zbl 0983.65090
[29] Wazwaz, A. M., A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Appl. Math. Comput., 118, 327-342 (2001) · Zbl 1023.65150
[30] Al-Hayani, W.; Casasus, L., The Adomian decomposition method in turning point problems, Appl. Math. Comput., 177, 187-203 (2005) · Zbl 1062.65076
[31] Wazwaz, A. M., The numerical solution of fifth-order boundary value problems by the decomposition method, Appl. Math. Comput., 136, 259-270 (2001) · Zbl 0986.65072
[32] Wazwaz, A. M., A note on using Adomian decomposition method for solving boundary value problems, Found. Phys. Lett., 13, 5, 493-498 (2000)
[33] Hashim, I., Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, Appl. Math. Comput., 193, 658-664 (2006) · Zbl 1093.65122
[34] Dehghan, M., Application of the adomian decomposition method for two-dimensional parabolic equation subject to nonstandard boundary specifications, Appl. Math. Comput., 157, 549-560 (2004) · Zbl 1054.65105
[35] Wazwaz, A. M., A reliable modification of Adomian’s decomposition method, Appl. Math. Comput., 102, 77-96 (1999)
[36] Wazwaz, A. M., The modified decomposition method applied to unsteady flow of gas through a porous medium, Appl. Math. Comput., 118, 123-132 (2001) · Zbl 1024.76056
[37] Inc, M.; Evans, D. J., The decomposition method for solving a class of singular two-point boundary value problems, Int. J. Comput. Math., 80, 7, 869-882 (2003) · Zbl 1041.65060
[38] Sami Bataineh, A.; Noorani, M. S.M.; Hashim, I., Approximate solutions of singular two-point BVPs by modified homotopy analysis method, Phys. Lett. A, 372, 4062-4066 (2008) · Zbl 1220.34026
[39] Ravi Kanth, A. S.V.; Aruna, K., Solution of singular two-point boundary value problems using differential transformation method, Phys. Lett. A, 372, 4671-4673 (2008) · Zbl 1221.34060
[40] Lesnic, D., A computational algebraic investigation of the decomposition method for time-dependent problems, Appl. Math. Comput., 119, 197-206 (2001) · Zbl 1023.65107
[41] Benabidallah, M.; Cherruault, Y., Application of the Adomian method for solving a class of boundary problems, Kybernetes, 33, 1, 118-132 (2004) · Zbl 1058.65075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.