×

Dehn twists in Heegaard Floer homology. (English) Zbl 1209.57017

The main results of this paper are two long exact sequences in the hat-version of Heegaard Floer homology in \(\mathbb{Z}_2\)-coefficients, together with their application in contact geometry.
A Heegaard splitting represents a \(3\)-manifold \(Y\) as glued from two handlebodies of genus \(g\) along their boundary \(\Sigma\). A Heegaard diagram describes the gluing map using two collections of \(g\) embedded curves \((\alpha, \beta)\). The collections \(\alpha\) and \(\beta\) define Lagrangian tori \(T_\alpha\) and \(T_\beta\) in the \(g\)-fold symmetric product \(Sym^g \Sigma\). When the Heegaard diagram is admissible, the hat-version of Heegaard Floer homology \(\widehat{HF}(Y)\) is defined from a variant of the Lagrangian Floer homology for the pair \(T_\alpha\) and \(T_\beta\) [P. Ozsváth and Z. Szabó, Ann. Math. (2) 159, 1027–1158 (2004; Zbl 1073.57009)].
Let \(K\) be a knot in \(Y\), then a Heegaard splitting can be chosen such that \(K\) is an embedded curve on \(\Sigma\). Using a Heegaard diagram subordinate to the knot \(K\), a similar variant of the Lagrangian Floer homology defines the hat-version of knot Floer homology \(\widehat{HFK}(Y, K)\). In §2, the author shows that the construction of \(\widehat{HFK}(Y, K)\) [P. Ozsváth and Z. Szabó, Adv. Math. 186, 58–116 (2004; Zbl 1062.57019)] extends to arbitrary knots \(K\). Let \(Y_0(K)\) (respectively \(Y_{\pm 1}(K)\)) be the result of \(0\)-surgery (respectively \((\pm 1)\)-surgery) along the knot \(K\) and let \(\mu\) be the meridian of \(K\) in \(Y\). The main result of the present paper is the exact sequence proven in §4:
\[ \ldots \to \widehat{HFK}(Y, K) \to \widehat{HF}(Y_{-1}(K)) \to \widehat{HFK}(Y_0(K), \mu) \to \ldots \]
and a similar one with \(\widehat{HF}(Y_{+1}(K))\) and opposite arrows instead. The Dehn twists in the title is due to the fact that \(Y_{\pm 1}(K)\) can be obtained by performing a \((\mp)\)-Dehn surgery along \(K\) on the gluing map that defines \(Y\). The exact sequences are shown by analysing directly how the Heegaard Floer complex behaves under the Dehn twists, using \(\delta\)-adapted Heegaard diagrams (Definition 4.1). In §5, the author shows that the map \(\Gamma_1\) in the exact sequences that relates \(\widehat{HFK}(Y, K)\) and \(\widehat{HF}(Y_{\pm 1}(K))\) is topological, i.e. it depends only on the cobordism associated to the surgery.
The rest of the paper (§6 and §7) discusses the implication of the exact sequence when \(K = L\) is a Legendrian knot in a contact manifold \((Y, \xi)\). In this case, one performs \((\pm 1)\)-surgery along \(L\) in the contact category and uses the cohomological version of the exact sequences (which corresponds to changing the orientation of \(Y\), and the directions of the maps). Two invariants are discussed. The first one is the contact element \(c(Y, \xi) \in \widehat{HF}(-Y)\) [K. Honda, W. H. Kazez and G. Matić, J. Differ. Geom. 83, No. 2 289–311 (2009; Zbl 1186.53098)] and the other is the Legendrian invariant \(\widehat{\mathcal L}(L) \in \widehat{HFK}(-Y, L)\) of \(L\) [P. Lisca, P. Ozváth, A. I. Stipsicz and Z. Szabó, J. Eur. Math. Soc. (JEMS) 11, No. 6, 1307–1363 (2009; Zbl 1232.57017)]. Let \((Y_L^\pm, \xi_L^\pm)\) denote the result of the \((\pm 1)\)-contact surgery, then the main result in this part of the paper is
\[ \Gamma_{-W}(\widehat{\mathcal L}(L)) = c(Y^+_L, \xi_L^+) \text{ and } \Gamma_{-W}(c(Y_L^-, \xi_L^-)) = 0, \]
where \(W\) is the cobordism associated to the contact surgeries and \(\Gamma_{-W}\) corresponds to \(\Gamma_1\) above. The paper goes on to prove relations among other contact invariants, as well as new and known vanishing results for \(c(Y^+_L, \xi_L^+)\) for various types of \((Y, \xi, L)\).

MSC:

57R17 Symplectic and contact topology in high or arbitrary dimension
53D35 Global theory of symplectic and contact manifolds
57R58 Floer homology
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G E Bredon, Topology and geometry, Graduate Texts in Mathematics 139, Springer (1993) · Zbl 0791.55001
[2] F Ding, H Geiges, Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153 · Zbl 0974.53061 · doi:10.2140/agt.2001.1.153
[3] F Ding, H Geiges, A Legendrian surgery presentation of contact 3-manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583 · Zbl 1069.57015 · doi:10.1017/S0305004103007412
[4] F Ding, H Geiges, Handle moves in contact surgery diagrams, J. Topol. 2 (2009) 105 · Zbl 1169.57025 · doi:10.1112/jtopol/jtp002
[5] F Ding, H Geiges, A I Stipsicz, Surgery diagrams for contact 3-manifolds, Turkish J. Math. 28 (2004) 41 · Zbl 1077.53071
[6] F Ding, H Geiges, A I Stipsicz, Lutz twist and contact surgery, Asian J. Math. 9 (2005) 57 · Zbl 1081.53068 · doi:10.4310/AJM.2005.v9.n1.a5
[7] Y Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989) 623 · Zbl 0684.57012 · doi:10.1007/BF01393840
[8] Y Eliashberg, Topological characterization of Stein manifolds of dimension \(> 2\), Internat. J. Math. 1 (1990) 29 · Zbl 0699.58002 · doi:10.1142/S0129167X90000034
[9] J B Etnyre, Lectures on open book decompositions and contact structures, Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103 · Zbl 1108.53050
[10] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge University Press (2008) · Zbl 1153.53002 · doi:10.1017/CBO9780511611438
[11] R E Gompf, A I Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999) · Zbl 0933.57020
[12] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 · Zbl 1171.57031 · doi:10.1007/s00222-008-0173-3
[13] K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Diff. Geom. (to appear) · Zbl 1186.53098
[14] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429 · Zbl 1129.57039 · doi:10.2140/agt.2006.6.1429
[15] P Lisca, P Ozsváth, A I Stipsicz, Z Szabó, Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. \((\)JEMS\()\) 11 (2009) 1307 · Zbl 1232.57017 · doi:10.4171/JEMS/183
[16] P Lisca, A I Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds I, Geom. Topol. 8 (2004) 925 · Zbl 1059.57017 · doi:10.2140/gt.2004.8.925
[17] P Lisca, A I Stipsicz, Notes on the contact Ozsváth-Szabó invariants, Pacific J. Math. 228 (2006) 277 · Zbl 1172.57012 · doi:10.2140/pjm.2006.228.277
[18] P Lisca, A I Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds II, J. Differential Geom. 75 (2007) 109 · Zbl 1112.57005
[19] P Ozsváth, A I Stipsicz, Contact surgeries and the transverse invariant in knot Floer homology · Zbl 1204.57011 · doi:10.1017/S1474748010000095
[20] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225 · Zbl 1130.57303 · doi:10.2140/gt.2003.7.225
[21] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[22] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. \((2)\) 159 (2004) 1159 · Zbl 1081.57013 · doi:10.4007/annals.2004.159.1159
[23] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. \((2)\) 159 (2004) 1027 · Zbl 1073.57009 · doi:10.4007/annals.2004.159.1027
[24] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 · Zbl 1083.57042 · doi:10.1215/S0012-7094-04-12912-4
[25] B Sahamie, Dehn Twists and Heegaard Floer Homology, PhD thesis, Universität zu Köln (2009) · Zbl 1209.57017
[26] A I Stipsicz, V Vértesi, On invariants for Legendrian knots, Pacific J. Math. 239 (2009) 157 · Zbl 1149.57031 · doi:10.2140/pjm.2009.239.157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.