×

Dynamics of a plant-herbivore-predator system with plant-toxicity. (English) Zbl 1208.92046

Summary: A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

MSC:

92C80 Plant biology
92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
65C60 Computational problems in statistics (MSC2010)
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Augustine, D. J.; Frelich, L. E.; Jordan, P. A., Evidence for two stable states in an ungulate grazing system, Ecol. Monogr., 8, 1260 (1998)
[2] Bertram, M. R.; Vivion, M. T., Moose mortality in eastern interior Alaska, J. Wildlife Manage., 66, 747 (2002)
[3] Bryant, J. P.; Chapin, F. S., Browsing-woody plant interactions during boreal forest plant succession, (Van Cleve, K.; Chapin, F. S.; Flanagan, P. W.; Viereck, L. A.; Dyrness, C. T., Taiga Ecosystem Function (1986), Springer: Springer NY)
[4] Bryant, J. P.; Chapin, F. S.; Klein, D. R., Carbon/nutrient balance of boreal plants in relation to herbivory, Oikos, 40, 357 (1983)
[5] Bryant, J. P.; Kuropat, P., Subarctic browsing vertebrate winter forage selection: the role of plant chemistry, Annu. Rev. Ecol. Syst., 11, 261 (1980)
[6] Clay, K., Symbiosis and the regulation of communities, Am. Zool., 41, 810 (2001)
[7] Clay, K.; Hola, J., Fungal endophyte symbiosis and plant diversity in successional fields, Science, 285, 1742 (1999)
[8] Clay, K.; Holah, J.; Rudgers, J. A., Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition, PNAS, 102, 12465 (2005)
[9] Cohen, Y.; Pastor, J.; Moen, R., Bite, chew, and swallow, Ecol. Model., 116, 1 (1999)
[10] Dearing, M. D.; Foley, W. J.; McLean, S., The influence of secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates, Annu. Rev. Ecol. Evol .Syst., 36, 169 (2005)
[11] Feng, Z.; Liu, R.; DeAngelis, D. L., Plant-herbivore interactions mediated by plant toxicity, Theoret. Popul. Biol., 23, 449 (2008) · Zbl 1210.92050
[12] Feng, Z.; Liu, R.; DeAngelis, D. L.; Bryant, J. P.; Kielland, K.; Chapin, F. S.; Swihart, R. K., Plant toxicity, adaptive herbivory, and plant community dynamics, Ecosystems, 12, 534 (2009)
[13] Freeland, W. J.; Janzen, D. H., Strategies in herbivory by mammals: the role of plant secondary compounds, Am. Nat., 108, 269 (1974)
[14] Hobbs, N. T.; Gross, J. E.; Shipley, L. A.; Spalingfer, D. E.; Wunder, B. A., Herbivore functional response in heterogenous environments: a contest among models, Ecology, 84, 666 (2003)
[15] Holling, C. S., The components of predation as revealed by a study of small mammal predation on the European pine sawfly, Can. Entomol., 91, 293 (1959)
[16] Holling, C. S., Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385 (1959)
[17] Holt, R. D., Predation, apparent competition, and the structure of prey communities, Theoret. Popul. Biol., 12, 197 (1977)
[18] Kielland, K.; Bryant, J. P., Moose herbivory in taiga: effects on biogeochemistry and vegetation dynamics in primary succession, Oikos, 82, 377 (1998)
[19] Kielland, K.; Bryant, J. P.; Ruess, R. W., Mammalian herbivory, ecosystem engineering and ecological cascades in Alaskan boreal forests, (Chapin, F. S.; Oswood, M. W.; Viereck, L. W.; Verbyla, D. L., Alaska’s Changing Boreal Forest (2006), Oxford University: Oxford University Oxford)
[20] Kuznetsov, Yu. A., Elements of Applied Bifurcation Theory (2004), Springer: Springer New York · Zbl 1082.37002
[21] Li, Y.; Feng, Z.; Swihart, R.; Bryant, J.; Huntly, N., Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Diff. Equs., 18, 1021 (2006) · Zbl 1113.34035
[22] Liu, R.; Feng, Z.; Zhu, H.; DeAngelis, D. L., Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Diff. Equs., 245, 442 (2008) · Zbl 1165.34028
[23] Lundberg, P., Functional response of a small mammalian herbivore: the disc equation revisited, J. Anim. Ecol., 57, 999 (1988)
[24] Lundberg, P., Functional response of browsers: tree exploitation by moose, Oikos, 58, 378 (1990)
[25] Owen-Smith, N., Adaptive Herbivore Ecology: From Resource to Populations in Variable Environments (2002), Cambridge University
[26] Palo, R. T.; Robbins, C. T., Plant Chemical Defenses against Mammalian Herbivory (1991), CRC: CRC Boca Raton, Florida
[27] Pastor, J.; Naimen, R. J., Selective foraging and ecosystem processes in boreal forests, Am. Nat., 139, 690 (1992)
[28] Pastor, J.; Naiman, R. J.; Dewey, B.; McInnes, P., Moose, microbes and the boreal forest, BioScience, 38, 770 (1988)
[29] Pastor, J.; Standke, K.; Farnsworth, K.; Moen, R.; Cohen, Y., Further development of the Spalinger-Hobbs mechanistic foraging model for free-ranging moose, Can. J. Zool., 77, 1505 (1999)
[30] R.O. Peterson, J.A. Vucetich, Ecological studies of wolves on Isle Royale, report.; R.O. Peterson, J.A. Vucetich, Ecological studies of wolves on Isle Royale, report.
[31] Provenza, F. D.; Villalba, J. J.; Dziba, L. E.; Atwood, S. B.; Banner, R. E., Linking herbivore experience, varied diets, and plant biochemical diversity, Small Ruminant Res., 49, 257 (2003)
[32] Spalinger, D. E.; Hobbs, N. T., Mechanisms of foraging in mammalian herbivores: new models of functional response, Am. Nat., 140, 325 (1992)
[33] Swihart, R. K.; DeAngelis, D. L.; Feng, Z.; Bryant, J. P., Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology, BMC Ecol. (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.