Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1208.32001
Chen, Huaihui; Pan, Yifei; Dai, Shaoyu
The Schwarz-Pick lemma of high order in several variables.
(English)
[J] Mich. Math. J. 59, No. 3, 517-533 (2010). ISSN 0026-2285

Let $\Bbb B_n$ denote the unit ball in $\Bbb C^n$, and let $\Omega_{n,m}$ be the class of all holomorphic mappings $f:\Bbb B_n\rightarrow\Bbb B_m$. The authors define the Bergman metric for the unit ball $\Bbb B_n$ as $$H_n(z;\beta):=\frac{(1-\|z\|^2)\|\beta\|^2+|\langle\beta,z\rangle|^2}{(1-\|z\|^2)^2},\quad z\in\Bbb B^n,\ \beta\in\Bbb C^n,$$ where $\langle\ ,\ \rangle$ denotes the Hermitian scalar product in $\Bbb C^n$ and $\|z\|:=(\langle z,z\rangle)^{1/2}$. \par For $f\in\Omega_{n,m}$, $k\in\Bbb N$, and $z\in\Bbb B_n$, the Fréchet derivative of $f$ at $z$ of order $k$ is defined by $$D_k(f,z,\beta):=\sum_{|\alpha|=k}\frac{k!}{\alpha!}\frac{\partial^kf(z)}{\partial z_1^{\alpha_1}\dots\partial z_n^{\alpha_n}}\beta^{\alpha},\quad\beta\in\Bbb C^n.$$ \par The main result of the paper is the following. \par Let $f\in\Omega_{n,m}$, $k\in\Bbb N$, $z\in\Bbb B_n$, $\beta\in\Bbb C^n\setminus\{0\}$. Then $$H_m(f(z);D_k(f,z,\beta))\leqslant(k!)^2\left(1+\frac{|\langle\beta,z\rangle|}{((1-\|z\|^2)\|\beta\|^2+|\langle\beta,z\rangle|^2)^{1/2}}\right)^{2(k-1)}(H_n(z;\beta))^k.$$ \par It is a generalization of the classical Schwarz-Pick lemma (take $n=m=k=1$) and the result by {\it H.~H.~Chen} [Sci. China, Ser. A 46, No. 6, 838--846 (2003; Zbl 1097.47509)] (take $k=1$). \par As a consequence of the main result, the authors obtain a Schwarz-Pick estimate for partial derivatives of a mapping $f\in\Omega_{n,m}$, which, in case $m=1$, is much better than the one obtained by {\it Z.~H.~Chen} and {\it Y.~Liu} [Acta Math. Sin., Engl. Ser. 26, No. 5, 901--908 (2010; Zbl 05795520)].
[Pawel Zapalowski (Kraków)]
MSC 2000:
*32A10 Holomorphic functions (several variables)
32F45 Invariant metrics and pseudodistances

Keywords: Schwarz-Pick lemma; Bergman metric

Citations: Zbl 1097.47509; Zbl 05795520

Highlights
Master Server