×

A fixed point theorem of Subrahmanyam type in uniform spaces with generalized pseudodistances. (English) Zbl 1206.54068

Summary: In uniform spaces, not necessarily sequentially complete, using the concept of the \(\mathcal J\)-family of generalized pseudodistances, a fixed point theorem of Subrahmanyam type is established. The result and method of investigations presented here are new for maps in uniform and locally convex spaces and even in metric spaces.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banach, S., Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3, 133-181 (1922) · JFM 48.0201.01
[2] Subrahmanyam, P. V., Remarks on some fixed point theorems related to Banach’s contraction principle, J. Math. Phys. Sci.. J. Math. Phys. Sci., J. Math. Phys. Sci., 9, 195-458 (1975), (Erratum) · Zbl 0294.54033
[3] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44, 381-391 (1996) · Zbl 0897.54029
[4] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253, 440-458 (2001) · Zbl 0983.54034
[5] Suzuki, T., Subrahmanyam’s fixed point theorem, Nonlinear Anal., 71, 1678-1683 (2009) · Zbl 1170.54016
[6] Włodarczyk, K.; Plebaniak, R., Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances, Fixed Point Theory Appl., 2010 (2010), Article ID 175453, 35 pages · Zbl 1201.54039
[7] Tataru, D., Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163, 345-392 (1992) · Zbl 0757.35034
[8] Lin, L.-J.; Du, W.-S., Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl., 323, 360-370 (2006) · Zbl 1101.49022
[9] Vályi, I., A general maximality principle and a fixed point theorem in uniform spaces, Period. Math. Hungar., 16, 127-134 (1985) · Zbl 0551.47025
[10] Suzuki, T., Several fixed point theorems concerning \(\tau \)-distance, Fixed Point Theory Appl., 2004, 195-209 (2004) · Zbl 1076.54532
[11] Subrahmanyam, P. V., Completeness and fixed-points, Monatsh. Math., 80, 325-330 (1975) · Zbl 0312.54048
[12] Włodarczyk, K.; Plebaniak, R., Periodic point, endpoint, and convergence theorems for dissipative set-valued dynamic systems with generalized pseudodistances in cone uniform and uniform spaces, Fixed Point Theory Appl., 2010 (2010), Article ID 864536, 32 pages · Zbl 1193.37101
[13] Włodarczyk, K.; Plebaniak, R.; Doliński, M., Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-asymptotic contractions, Nonlinear Anal., 71, 5022-5031 (2009) · Zbl 1203.54051
[14] Włodarczyk, K.; Plebaniak, R.; Obczyński, C., Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Anal., 72, 794-805 (2010) · Zbl 1185.54020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.