×

The \((\frac{G'}G)\)-expansion method for Tzitzéica type nonlinear evolution equations. (English) Zbl 1205.35009

Summary: The \((\frac{G'}G)\)-expansion method is applied for constructing more general exact solutions of the three nonlinear evolution equations with physical interest namely, the Tzitzéica equation, the Dodd-Bullough-Mikhailov (DBM) equation and the Tzitzéica-Dodd-Bullough (TDB) equation. Our work is motivated by the fact that the \((\frac{G'}G)\)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.

MSC:

35A35 Theoretical approximation in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Segur, H., Solitons and Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
[2] Tam, H. W.; Hu, X. B., Soliton solutions and Backlund transformation for the Kupershmidt five-field lattice: a bilinear approach, Appl. Math. Lett., 15, 987-993 (2002) · Zbl 1009.37047
[3] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press: Cambridge University Press Cambridge
[4] A. Borhanifar, Reza Abazari, An unconditionally stable parallel difference scheme for telegraph equation, Math. Probl. Eng. (2009), http://doi:10.1155/2009/969610; A. Borhanifar, Reza Abazari, An unconditionally stable parallel difference scheme for telegraph equation, Math. Probl. Eng. (2009), http://doi:10.1155/2009/969610 · Zbl 1181.78018
[5] Abazari, Reza; Borhanifar, A., Numerical study of Burgers’ and coupled Burgers’ equations by differential transformation method, Comput. Math. Appl., 59, 2711-2722 (2010) · Zbl 1193.65178
[6] Freeman, N. C.; Nimmo, J. J.C., Soliton solitons of the KdV and KP equations: the Wroanskian technique, Proc. R. Soc. Lond. Ser. A, 389, 319-329 (1983) · Zbl 0588.35077
[7] Liu, G. T.; Fan, T. Y., New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A, 345, 161-166 (2005) · Zbl 1345.35091
[8] Wang, M. L., Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 213, 279-287 (1996) · Zbl 0972.35526
[9] He, J. H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comput., 151, 287-292 (2004) · Zbl 1039.65052
[10] Shahrbabaki, A. Shabani; Abazari, Reza, Perturbation method for heat exchange between a gas and solid particles, J. Appl. Mech. Tech. Phys., 50, 6, 959-964 (2009) · Zbl 1272.76293
[11] Yan, Z. Y., An improved algebra method and its applications in nonlinear wave equations, Chaos Solitons Fractals, 21, 1013-1021 (2004) · Zbl 1046.35103
[12] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0718.35004
[13] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston · Zbl 0802.65122
[14] Yan, C. T., A simple transformation for nonlinear waves, Phys. Lett. A, 224, 77-84 (1996) · Zbl 1037.35504
[15] Malfliet, W.; Hereman, W., The tanh method I: exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563-568 (1996) · Zbl 0942.35034
[16] Xu, Fei, Application of exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett. A, 372, 252-257 (2008) · Zbl 1217.35110
[17] Tascan, Filiz; Bekir, Ahmet; Koparan, Murat, Travelling wave solutions of nonlinear evolution equations by using the first integral method, Commun. Nonlinear Sci. Numer. Simul., 14, 1810-1815 (2009)
[18] Wu, Guo-cheng; Xia, Tie-cheng, A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations, Phys. Lett. A, 372, 604-609 (2008) · Zbl 1217.35154
[19] Wang, M.; Li, X.; Zhang, J., The \((\frac{G^\prime}{G})\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372, 417-423 (2008)
[20] Bekir, A., Application of the \((\frac{G^\prime}{G})\)-expansion method for nonlinear evolution equations, Phys. Lett. A, 372, 3400-3406 (2008) · Zbl 1228.35195
[21] Aslan, I.; Ozis, T., On the validity and reliability of the \((\frac{G^\prime}{G})\)-expansion method by using higher-order nonlinear equations, Appl. Math. Comput., 211, 531-536 (2009) · Zbl 1162.65391
[22] Bekir, A.; Cevikel, A. C., New exact travelling wave solutions of nonlinear physical models, Chaos Solitons Fractals, 41, 1733-1739 (2009) · Zbl 1198.35049
[23] Zayed, E. M.E.; Gepreel, K. A., Some applications of the \((\frac{G^\prime}{G})\)-expansion method to non-linear partial differential equations, Appl. Math. Comput., 212, 1-13 (2009) · Zbl 1166.65386
[24] Ganji, D. D.; Abdollahzadeh, M., Exact traveling solutions of some nonlinear evolution equation by \((\frac{G^\prime}{G})\)-expansion method, J. Math. Phys., 50, 013519 (2009)
[25] Wang, M.; Zhang, J.; Li, X., Application of the \((\frac{G^\prime}{G})\)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput., 206, 321-326 (2008) · Zbl 1157.65459
[26] Ling-Xiao, L.; Ming-Liang, W., The \((\frac{G^\prime}{G})\)-expansion method and travelling wave solutions for a higher-order nonlinear Schrödinger equation, Appl. Math. Comput., 208, 440-445 (2009) · Zbl 1170.35536
[27] Zayed, E. M.E.; Gepreel, K. A., The \((\frac{G^\prime}{G})\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. Math. Phys., 50, 013502 (2008)
[28] Aslan, I.; Ozis, T., Analytic study on two nonlinear evolution equations by using the \((\frac{G^\prime}{G})\)-expansion method, Appl. Math. Comput., 209, 425-429 (2009) · Zbl 1167.35451
[29] Zhang, J.; Wei, X.; Lu, Y., A generalized \((\frac{G^\prime}{G})\)-expansion method and its applications, Phys. Lett. A, 372, 3653-3658 (2008) · Zbl 1220.37070
[30] Zhang, S.; Wang, W.; Tong, J., A generalized \((\frac{G^\prime}{G})\)-expansion method and its application to the \((2 + 1)\)-dimensional Broer-Kaup equations, Appl. Math. Comput., 209, 399-404 (2009) · Zbl 1165.35457
[31] Yu-Bin, Z.; Chao, L., Application of modified \((\frac{G^\prime}{G})\)-expansion method to traveling wave solutions for Whitham Broer Kaup-like equations, Commun. Theor. Phys., 51, 664-670 (2009) · Zbl 1181.35223
[32] Zhang, H., New application of the \((\frac{G^\prime}{G})\)-expansion method, Commun. Nonlinear Sci. Numer. Simul., 14, 3220-3225 (2009) · Zbl 1221.35380
[33] Tzitzéica, G., Géometric infinitésimale-sur une nouvelle classe de surface, C. R. Math. Acad. Sci. Paris, 150, 227 (1910)
[34] El-Wakil, S. A.; Abdou, M. A.; Hendi, A., New periodic wave solutions via exp-function method, Phys. Lett. A, 372, 830-840 (2008) · Zbl 1217.37070
[35] Wazwaz, A. M., The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons Fractals, 25, 1, 55-63 (2005) · Zbl 1070.35076
[36] He, Ji-Huan; Wu, Xu-Hong, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[37] He, Ji-Huan; Abdou, M. A., New periodic solutions for nonlinear evolution equations using exp-function method, Chaos Solitons Fractals, 34, 1421-1429 (2007) · Zbl 1152.35441
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.