×

Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. (English) Zbl 1204.82028

A system of \(N\) bosons in three dimensions is assumed to interact via a repulsive short range pair potential (mimicking \(1/N\) scaled Dirac delta functional). The corresponding \(N\)-particle Schrödinger equation is considered in the time domain with initial data satisfying a suitable energy condition. Wave functions (pure states) are replaced by density matrices and the \(k\)-particle density matrices of an initial state are assumed to factorize as \(N\rightarrow \infty\).
The major result of the paper is that a resultant solution \(\psi _{N,t}\) supports \(k\)-particle density matrices that asymptotically factorize and that the one-particle orbital wave function solves the Gross-Pitaevskii equation. It was known before that the minimizer of the Gross-Pitaevskii energy functional correctly describes the ground state of an \(N\)-boson system in the large \(N\) limit, provided the length scale of the pair potential is of order \(1/N\).
The present analysis has been motivated by the fact that in experiments on Bose-Einstein condensation one observes the dynamics of the condensate when its initially imposed traps are removed. That takes the system away from the previous ground state. The experimental validity of the G-P equation asserts that the approximation of many body effects by a nonlinear on-site self-interaction of the order parameter applies to a certain class of excited states and their subsequent time evolution as well. A bit surprising observation is that for product initial states the energy behavior is not captured by the G-P evolution.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V70 Many-body theory; quantum Hall effect
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Adami, C. Bardos, F. Golse, and A. Teta, ”Towards a rigorous derivation of the cubic NLSE in dimension one,” Asymptot. Anal., vol. 40, iss. 2, pp. 93-108, 2004. · Zbl 1069.35082
[2] R. Adami, F. Golse, and A. Teta, ”Rigorous derivation of the cubic NLS in dimension one,” J. Stat. Phys., vol. 127, iss. 6, pp. 1193-1220, 2007. · Zbl 1118.81021 · doi:10.1007/s10955-006-9271-z
[3] C. Bardos, F. Golse, and N. J. Mauser, ”Weak coupling limit of the \(N\)-particle Schrödinger equation,” Methods Appl. Anal., vol. 7, iss. 2, pp. 275-293, 2000. · Zbl 1003.81027
[4] E. B. Davies, ”The functional calculus,” J. London Math. Soc., vol. 52, iss. 1, pp. 166-176, 1995. · Zbl 0858.47012 · doi:10.1112/jlms/52.1.166
[5] F. J. Dyson, ”Ground-state energy of a hard-sphere gas,” Phys. Rev., vol. 106, pp. 20-26, 1957. · Zbl 0077.23503 · doi:10.1103/PhysRev.106.20
[6] A. Elgart, L. ErdHos, B. Schlein, and H. Yau, ”Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons,” Arch. Ration. Mech. Anal., vol. 179, iss. 2, pp. 265-283, 2006. · Zbl 1086.81035 · doi:10.1007/s00205-005-0388-z
[7] A. Elgart and B. Schlein, ”Mean field dynamics of boson stars,” Comm. Pure Appl. Math., vol. 60, iss. 4, pp. 500-545, 2007. · Zbl 1113.81032 · doi:10.1002/cpa.20134
[8] L. ErdHos, B. Schlein, and H. Yau, ”Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate,” Comm. Pure Appl. Math., vol. 59, iss. 12, pp. 1659-1741, 2006. · Zbl 1122.82018 · doi:10.1002/cpa.20123
[9] L. ErdHos, B. Schlein, and H. Yau, ”Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems,” Invent. Math., vol. 167, iss. 3, pp. 515-614, 2007. · Zbl 1122.82018 · doi:10.1002/cpa.20123
[10] L. ErdHos and H. Yau, ”Derivation of the nonlinear Schrödinger equation from a many body Coulomb system,” Adv. Theor. Math. Phys., vol. 5, iss. 6, pp. 1169-1205, 2001. · Zbl 1014.81063
[11] J. Ginibre and G. Velo, ”The classical field limit of scattering theory for nonrelativistic many-boson systems. I,” Comm. Math. Phys., vol. 66, iss. 1, pp. 37-76, 1979. · Zbl 0443.35067 · doi:10.1007/BF01197745
[12] E. P. Gross, ”Structure of a quantized vortex in boson systems,” Nuovo Cimento, vol. 20, pp. 454-477, 1961. · Zbl 0100.42403 · doi:10.1007/BF02731494
[13] E. P. Gross, ”Hydrodynamics of a superfluid condensate,” J. Math. Phys., vol. 4, pp. 195-207, 1963.
[14] K. Hepp, ”The classical limit for quantum mechanical correlation functions,” Comm. Math. Phys., vol. 35, pp. 265-277, 1974.
[15] K. Huang, Statistical Mechanics, Second ed., New York: John Wiley & Sons, 1987. · Zbl 1041.82500
[16] E. H. Lieb and R. Seiringer, ”Proof of Bose-Einstein condensation for dilute trapped gases,” Phys. Rev. Lett., vol. 88, p. 170409, 2002. · Zbl 1041.81107
[17] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The Mathematics of the Bose Gas and its Condensation, Basel: Birkhäuser, 2005. · Zbl 1104.82012
[18] E. H. Lieb, R. Seiringer, and J. Yngvason, ”Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional,” Phys. Rev. A, vol. 61, p. 043602, 2000. · Zbl 1043.82515
[19] E. H. Lieb and J. Yngvason, ”Ground state energy of the low density Bose gas,” Phys. Rev. Lett., vol. 80, pp. 2504-2507, 1998. · Zbl 1017.82006
[20] L. P. Pitaevskii, ”Vortex lines in an imperfect Bose gas,” Soviet Phys. JETP, vol. 13, pp. 451-454, 1961.
[21] W. Rudin, Functional Analysis, New York: McGraw-Hill Book Co., 1973. · Zbl 0253.46001
[22] B. Simon, Trace Ideals and their Applications, Second ed., Providence, RI: Amer. Math. Soc., 2005. · Zbl 1074.47001
[23] H. Spohn, ”Kinetic equations from Hamiltonian dynamics: Markovian limits,” Rev. Modern Phys., vol. 52, iss. 3, pp. 569-615, 1980. · doi:10.1103/RevModPhys.52.569
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.