×

Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping. (English) Zbl 1203.93112

Summary: An adaptive fuzzy control method is developed to suppress chaos in the permanent magnet synchronous motor drive system via backstepping technology. Fuzzy logic systems are used to approximate unknown nonlinearities and an adaptive backstepping technique is employed to construct controllers. Compared with the conventional backstepping, the designed fuzzy controllers’ structure is very simple. The simulation results indicate that the proposed control scheme can suppress the chaos of PMSM drive systems and track the reference signal successfully even under parameter uncertainties.

MSC:

93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
34H10 Chaos control for problems involving ordinary differential equations
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Physical Review Letters, 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Li, Z.; Chen, G.; Shi, S.; Han, C., Robust adaptive tracking control for a class of uncertain chaotic systems, Physics Letters A, 310, 40-43 (2003) · Zbl 1011.37055
[3] Arecchi, F. T.; Boccaletti, S., Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos, Chaos, 7, 621-634 (1997) · Zbl 0938.37054
[4] Boccaletti, S.; Grebogi, C.; Lai, Y. C.; Mancini, H.; Maza, D., The control of chaos:theory and applications, Physics Reports, 329, 103-197 (2000)
[5] Kurths, J.; Boccaletti, S.; Grebogi, C.; Lai, Y. C., Introduction: control and synchronization in chaotic dynamical systems, Chaos, 13, 126-127 (2003)
[6] Y. Kuroe, S. Hayash, Analysis of bifurcation in power electronic induction motor drive system, in: IEEE Power Electronics Specialists Conference Rec., 1989, pp. 923-930.; Y. Kuroe, S. Hayash, Analysis of bifurcation in power electronic induction motor drive system, in: IEEE Power Electronics Specialists Conference Rec., 1989, pp. 923-930.
[7] Chen, J. H.; Chau, K. T.; Siu, S. M.; Chan, C. C., Experimental stabilization of chaos in a voltage-mode dc drive system, IEEE Transactions on Circuits and Systems. I, 47, 7, 1093-1095 (2000)
[8] Wang, Z.; Chau, K. T., Anti-control of chaos of a permanent magnet dc motor system for vibratory compactors, Chaos, Solitons and Fractals, 36, 694-708 (2008)
[9] Ge, Z. M.; Chang, C. M.; Chen, Y. S., Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems, Chaos, Solitons and Fractals, 27, 1298-1315 (2006) · Zbl 1091.93554
[10] B. Robert, F. Alin, C. Goeldel, Aperiodic and chaotic dynamics in hybrid step motor — new experimental results, in: Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 3, Pusan, Korea, 2001, pp. 2136-2141.; B. Robert, F. Alin, C. Goeldel, Aperiodic and chaotic dynamics in hybrid step motor — new experimental results, in: Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 3, Pusan, Korea, 2001, pp. 2136-2141.
[11] Y. Gao, K.T. Chau, S. Ye, A novel chaotic-speed single-phase induction motor drive for cooling fans, in: The 40th IAS Annual Meeting on Industry Applications Conference, vol. 2, 2005, pp. 1337-1341.; Y. Gao, K.T. Chau, S. Ye, A novel chaotic-speed single-phase induction motor drive for cooling fans, in: The 40th IAS Annual Meeting on Industry Applications Conference, vol. 2, 2005, pp. 1337-1341.
[12] Harb, A. M., Nonlinear chaos control in a permanent magnet reluctance machine, Chaos, Solitons and Fractals, 19, 1217-1224 (2004) · Zbl 1072.78512
[13] Gao, Y.; Chau, K. T., Hopf bifurcation and chaos in synchronous reluctance motor drives, IEEE Transactions on Energy Conversion, 19, 2, 296-302 (2004)
[14] J.H. Chen, K.T. Chau, Q. Jiang, C.C. Chan, S.Z. Jiang, Modeling and analysis of chaotic behavior in switched reluctance motor drives, in: IEEE 31st Annual Power Electronics Specialists Conference, vol. 3, 2000, pp. 1551-1556.; J.H. Chen, K.T. Chau, Q. Jiang, C.C. Chan, S.Z. Jiang, Modeling and analysis of chaotic behavior in switched reluctance motor drives, in: IEEE 31st Annual Power Electronics Specialists Conference, vol. 3, 2000, pp. 1551-1556.
[15] Li, Z.; Park, J. B.; Joo, Y. H.; Zhang, B.; Chen, G., Bifurcations and chaos in a permanent-magnet synchronous motor, IEEE Transactions on Circuits and Systems. I: Fundamental Theory and Applications, 49, 383-387 (2002)
[16] Wei, D. Q.; Luo, X. S.; Wang, B. H.; Fang, J. Q., Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor, Physics Letters A, 363, 71-77 (2007)
[17] Zribi, M.; Oteafy, A.; Smaoui, N., Controlling chaos in the permanent magnet synchronous motor, Chaos, Solitons and Fractals, 41, 3, 1266-1276 (2009)
[18] Ren, H.; Liu, D., Nonlinear feedback control of chaos in permanent magnet synchronous motor, IEEE Transactions on Circuits and Systems. II, 53, 1, 45-50 (2006)
[19] Y. Gao, K.T. Chau, Chaotification of pm synchronous motor drives using time-delay feedback, in: The IEEE 28th Annual Conference of the Industrial Electronics Society, vol. 2(1), 2002, pp. 762-766.; Y. Gao, K.T. Chau, Chaotification of pm synchronous motor drives using time-delay feedback, in: The IEEE 28th Annual Conference of the Industrial Electronics Society, vol. 2(1), 2002, pp. 762-766.
[20] H. Ren, D. Liu, J. Li, Delay feedback control of chaos in permanent magnet synchronous motor, in: Proceedings of the China Society Electronic Engineering Conference, vol. 23, 2003, pp. 175-178.; H. Ren, D. Liu, J. Li, Delay feedback control of chaos in permanent magnet synchronous motor, in: Proceedings of the China Society Electronic Engineering Conference, vol. 23, 2003, pp. 175-178.
[21] A. Stotsky, J.K. Hedrick, P.P. Yip, et al. The use of sliding modes to simplify the backstepping control method, in: Proceedings of the American Control Conference, vol. 3, 1997, pp. 1703-1708.; A. Stotsky, J.K. Hedrick, P.P. Yip, et al. The use of sliding modes to simplify the backstepping control method, in: Proceedings of the American Control Conference, vol. 3, 1997, pp. 1703-1708. · Zbl 0905.93010
[22] Krstic, M.; Kanellakopoulus, I.; Kokotovic, P., Nonlinear and Adaptive Control Design (1995), John Wiley and sons Inc.
[23] A. Zaher, M. Zohdy, Robust control of biped robots, in: Proceedings of ACC, Chicago IL, USA, 2000, pp. 1473-1478.; A. Zaher, M. Zohdy, Robust control of biped robots, in: Proceedings of ACC, Chicago IL, USA, 2000, pp. 1473-1478.
[24] A. Harb, A. Zaher, Nonlinear recursive chaos control, in: Proceedings of the American Control Conference, ACC, Anchorage, Alaska, 2002.; A. Harb, A. Zaher, Nonlinear recursive chaos control, in: Proceedings of the American Control Conference, ACC, Anchorage, Alaska, 2002.
[25] A. Harb, W. Ahmad, IASTED Conference on Applied Simulations and Modeling, Crete, Greece, 2002, pp. 451-453.; A. Harb, W. Ahmad, IASTED Conference on Applied Simulations and Modeling, Crete, Greece, 2002, pp. 451-453.
[26] Kwan, C. M.; Lewis, F. L., Robust backstepping control of induction motors using neural networks, IEEE Transactions on Neural Network, 11, 5, 1178-1187 (2000)
[27] Dawson, D.; Carroll, J. J.; Schneider, M., Integrator backstepping control of a brush dc motor turning a robotic load, IEEE Transactions on Control Syststems and Technology, 2, 3, 233-244 (1994)
[28] Hu, J.; Zou, J., Adaptive backstepping control of permanent magnet synchronous motors with parameter uncertainties, Control and Decision, 21, 11, 1264-1269 (2006) · Zbl 1116.93346
[29] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[30] Chen, B.; Liu, X.; Tong, S., Adaptive fuzzy approach to control unified chaotic systems, Chaos, Solitons and Fractals, 34, 1180-1187 (2007) · Zbl 1142.93356
[31] Lee, C. C., Fuzzy logic in control systems: fuzzy logic controller, part i, part ii, IEEE Transactions on Systems Man and Cybernetics, 20, 2, 404-435 (1990)
[32] Wang, L. X.; Mendel, J. M., Fuzzy basis functions, universal approximation, and orthogonal least squares learning, IEEE Transactions on Neural Networks, 3, 5, 807-814 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.