×

Thermodynamic geometry and critical behavior of black holes. (English) Zbl 1203.83032

Summary: Based on the observations that there exists an analogy between the Reissner–Nordström–Anti-de Sitter (RN–AdS) black holes and the van der Waals–Maxwell liquid-gas system, in which a correspondence of variables is \((\varphi ,q) \leftrightarrow (V,P)\), we study the Ruppeiner geometry, defined as Hessian matrix of black hole entropy with respect to the internal energy (not the mass) of black hole and electric potential (angular velocity), for the RN, Kerr and RN–AdS black holes. It is found that the geometry is curved and the scalar curvature goes to negative infinity at the Davies’ phase transition point for the RN and Kerr black holes. Our result for the RN–AdS black holes is also in good agreement with the one about phase transition and its critical behavior in the literature.

MSC:

83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF02345020 · Zbl 1378.83040
[2] DOI: 10.1103/PhysRevD.7.2333 · Zbl 1369.83037
[3] DOI: 10.1007/BF01645742 · Zbl 1125.83309
[4] DOI: 10.1098/rspa.1977.0047
[5] DOI: 10.1088/0034-4885/41/8/004
[6] DOI: 10.1088/0264-9381/6/12/018
[7] DOI: 10.1093/mnras/180.3.379
[8] DOI: 10.1088/0305-4470/13/3/043
[9] DOI: 10.1016/0375-9601(94)90919-9
[10] DOI: 10.1016/0375-9601(94)90446-4 · Zbl 0941.83523
[11] DOI: 10.1103/PhysRevD.53.816
[12] Lousto C. O., Nucl. Phys. B 410 pp 433–
[13] DOI: 10.1103/PhysRevD.51.1733
[14] DOI: 10.1007/BF00756588
[15] DOI: 10.1007/BF00759866
[16] DOI: 10.1103/PhysRevD.37.2052
[17] DOI: 10.1103/PhysRevD.43.2495
[18] DOI: 10.1103/PhysRevD.48.3473
[19] DOI: 10.1103/PhysRevD.50.2932
[20] DOI: 10.1016/0375-9601(96)00355-6
[21] DOI: 10.1007/BF02104753 · Zbl 0853.53071
[22] DOI: 10.1103/PhysRevD.55.853
[23] DOI: 10.1103/PhysRevLett.78.2531 · Zbl 1042.83516
[24] Cai R. G., Nucl. Phys. B 495 pp 339–
[25] Cai R. G., Commun. Theor. Phys. 31 pp 459–
[26] Cai R. G., J. Korean Phys. Soc. 33 pp S477–
[27] DOI: 10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009
[28] DOI: 10.4310/ATMP.1998.v2.n3.a3 · Zbl 1057.81550
[29] DOI: 10.1007/BF01208266
[30] DOI: 10.1103/PhysRevD.60.064018
[31] DOI: 10.1103/PhysRevD.60.104026
[32] DOI: 10.1103/PhysRevD.59.124007
[33] DOI: 10.1063/1.531249 · Zbl 0850.00013
[34] DOI: 10.1103/RevModPhys.67.605
[35] DOI: 10.1063/1.431689
[36] DOI: 10.1103/PhysRevA.20.1608
[37] Johnston D. A., Acta Phys. Polon. B 34 pp 4923–
[38] DOI: 10.1016/S0550-3213(97)00324-6 · Zbl 0935.83022
[39] DOI: 10.1142/S0217732391002773 · Zbl 1020.83620
[40] DOI: 10.1103/PhysRevD.46.5278
[41] DOI: 10.1103/PhysRevD.60.067502
[42] DOI: 10.1103/PhysRevD.72.104021
[43] DOI: 10.1023/A:1026058111582 · Zbl 1034.83011
[44] DOI: 10.1103/PhysRevD.62.124023
[45] DOI: 10.1103/PhysRevD.63.124018
[46] DOI: 10.1088/0264-9381/18/24/308 · Zbl 0987.83051
[47] DOI: 10.1103/PhysRevD.70.064013
[48] DOI: 10.1103/PhysRevD.70.124034
[49] Landau L. D., Statistical Physics (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.