×

Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions. (English) Zbl 1203.65225

Summary: We propose a tailored-finite-point method for a type of linear singular perturbation problem in two dimensions. Our finite point method has been tailored to some particular properties of the problem. Therefore, our new method can achieve very high accuracy with very coarse mesh even for very small \(\epsilon \), i.e. the boundary layers and interior layers do not need to be resolved numerically. In our numerical implementation, we study the classification of all the singular points for the corresponding degenerate first order linear dynamic system. We also study some cases with nonlinear coefficients. Our tailored finite point method is very efficient in both linear and nonlinear coefficients cases.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berger, A.E., Han, H.D., Kellogg, R.B.: A priori estimates and analysis of a numerical method for a turning point problem. Math. Comput. 42, 465–492 (1984) · Zbl 0542.34050 · doi:10.1090/S0025-5718-1984-0736447-2
[2] Brayanov, I., Dimitrova, I.: Uniformly convergent high-order schemes for a 2D elliptic reaction-diffusion problem with anisotropic coefficients. Lect. Notes Comput. Sci. 2542, 395–402 (2003) · Zbl 1032.65116
[3] Cheng, M., Liu, G.R.: A novel finite point method for flow simulation. Int. J. Numer. Methods Fluids 39, 1161–1178 (2002) · Zbl 1053.76056 · doi:10.1002/fld.365
[4] Ge, L., Zhang, J.: High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids. J. Comput. Phys. 171, 560–578 (2001) · Zbl 0990.65117 · doi:10.1006/jcph.2001.6794
[5] Han, H.D.: The artificial boundary method–numerical solutions of partial differential equations on unbounded domains. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics. Higher Education Press/World Scientific, Singapore (2005) · Zbl 1097.65115
[6] Han, H., Huang, Z.: A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium. J. Comput. Math. 26, 728–739 (2008) · Zbl 1174.65048
[7] Han, H., Huang, Z., Kellogg, B.: A Tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36, 243–261 (2008) · Zbl 1203.65221 · doi:10.1007/s10915-008-9187-7
[8] Huang, Z.: Tailored finite point method for the interface problem. Netw. Heterogeneous Media 4, 91–106 (2009) · Zbl 1187.65128 · doi:10.3934/nhm.2009.4.91
[9] Hemker, P.W.: A singularly perturbed model problem for numerical computation. J. Comput. Appl. Math. 76, 277–285 (1996) · Zbl 0870.35020 · doi:10.1016/S0377-0427(96)00113-6
[10] Il’in, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes 6, 596–602 (1969)
[11] Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer, New York (1980) · Zbl 0443.34001
[12] Li, J., Chen, Y.: Uniform convergence analysis for singularly perturbed elliptic problems with parabolic layers. Numer. Math. Theor. Methods Appl. 1, 138–149 (2008) · Zbl 1174.65508
[13] Li, J., Navon, I.M.: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection-diffusion. Comput. Methods Appl. Mech. Eng. 162, 49–78 (1998) · Zbl 0936.65134 · doi:10.1016/S0045-7825(97)00329-0
[14] Lin, H., Atluri, S.N.: The Meshless Local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations. CMES 2, 117–142 (2001)
[15] Mendeza, B., Velazquez, A.: Finite point solver for the simulation of 2-D laminar incompressible unsteady flows. Comput. Methods Appl. Mech. Eng. 193, 825–848 (2004) · Zbl 1106.76423 · doi:10.1016/j.cma.2003.11.010
[16] Miller, J.J.H.: On the convergence, uniformly in {\(\epsilon\)}, of difference schemes for a two-point boundary singular perturbation problem. In: Hernker, P.W., Miller, J.J.H. (eds.) Numerical Analysis of Singular Perturbation Problems, pp. 467–474. Academic Press, San Diego (1979)
[17] Morton, K.W.: Numerical Solution of Converction-Diffusion Problems. Applied Mathematics and Mathematical Computation, vol. 12. Chapman and Hall, London (1996) · Zbl 0861.65070
[18] Morton, K.W., Stynes, M., Süli, E.: Analysis of a cell-vertex finite volume method for convection-diffusion problems. Math. Comput. 66, 1389–1406 (1997) · Zbl 0885.65121 · doi:10.1090/S0025-5718-97-00886-7
[19] Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39, 3839–3866 (1996) · Zbl 0884.76068 · doi:10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
[20] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, New York (1996) · Zbl 0844.65075
[21] Shishkin, G.I.: A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation. Numer. Math. Theor. Methods Appl. 1, 214–234 (2008) · Zbl 1174.65466
[22] Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005) · Zbl 1115.65108 · doi:10.1017/S0962492904000261
[23] Wesseling, P.: Uniform convergence of discretization error for a singular perturbation problem. Numer. Methods Partial Differ. Equ. 12, 657–671 (1996) · Zbl 0862.76056 · doi:10.1002/(SICI)1098-2426(199611)12:6<657::AID-NUM2>3.0.CO;2-R
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.