×

Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion. (English) Zbl 1203.37062

Summary: In systems with cyclic dynamics, invasions often generate periodic spatiotemporal oscillations, which undergo a subsequent transition to chaos. The periodic oscillations have the form of a wavetrain and occur in a band of constant width. In applications, a key question is whether one expects spatiotemporal data to be dominated by regular or irregular oscillations or to involve a significant proportion of both. This depends on the width of the wavetrain band. Here, we present mathematical theory that enables the direct calculation of this width. Our method synthesizes recent developments in stability theory and computation. It is developed for only 1 equation system, but because this is a normal form close to a Hopf bifurcation, the results can be applied directly to a wide range of models. We illustrate this by considering a classic example from ecology: wavetrains in the wake of the invasion of a prey population by predators.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
35Q56 Ginzburg-Landau equations
35K57 Reaction-diffusion equations

Software:

PRED_PREY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kopell, Science 180 (4091) pp 1171– (1973)
[2] Physica. D 37 pp 359– (1989)
[3] Physica. D 174 pp 134– (2003) · Zbl 1076.76525
[4] PHYS REPORTS 386 pp 29– (2003) · Zbl 1042.74029
[5] Physica. D 145 pp 191– (2000) · Zbl 0963.35164
[6] Journal of Physical Chemistry 100 pp 13132– (1996)
[7] Physica. D 200 pp 303– (2005) · Zbl 1096.92013
[8] Bierman 167 (4) pp 583– (2006)
[9] Physica. D 70 pp 370– (1994) · Zbl 0812.35062
[10] Petrovskii, Theoretical population biology 59 (2) pp 157– (2001) · Zbl 1035.92046
[11] Garvie, Bulletin of mathematical biology 69 (3) pp 931– (2007) · Zbl 1298.92081
[12] Physical Review Letters 51 pp 2171– (1983)
[13] 27 pp 914– (2006) · Zbl 1134.35398
[14] Z ANGEW MATH PHYS 53 pp 103– (2002) · Zbl 1005.92024
[15] Kot, Journal of mathematical biology 30 (4) pp 413– (1992) · Zbl 0825.92126
[16] Physica. D 95 pp 319– (1996) · Zbl 0888.35051
[17] Sherratt, Journal of The Royal Society Interface 5 (22) pp 483– (2008)
[18] Reviews of Modern Physics 74 pp 99– (2002) · Zbl 1205.35299
[19] Physica. D 82 pp 165– (1995) · Zbl 0900.35194
[20] Physica. D 56 pp 303– (1992) · Zbl 0763.35088
[21] 6 pp 703– (1993)
[22] Kay, IMA Journal of Applied Mathematics 63 (2) pp 199– (1999) · Zbl 0939.35091
[23] Physica. D 145 pp 233– (2000) · Zbl 0963.34072
[24] Physica. D 229 pp 166– (2007) · Zbl 1119.65114
[25] STUD APPL MATH 52 pp 291– (1973) · Zbl 0305.35081
[26] 134 pp 1– (1999)
[27] SIAM J APPL DYN SYST 3 pp 1– (2004) · Zbl 1059.37062
[28] Sherratt, PNAS 92 (7) pp 2524– (1995) · Zbl 0819.92024
[29] MATH COMPUT MODELL 29 pp 49– (1999)
[30] Physica. D 117 pp 145– (1998) · Zbl 0940.35111
[31] 4 pp 30– (2001)
[32] 162 pp 503– (2003)
[33] Nature; Physical Science (London) 390 pp 456– (1997)
[34] PROC R SOC LONDON SET B 265 pp 1491– (1998)
[35] 66 pp 607– (1997)
[36] Physica. D 236 pp 90– (2007) · Zbl 1361.34040
[37] Petrovskii, Bulletin of mathematical biology 67 (3) pp 637– (2005) · Zbl 1334.92363
[38] Theoretical population biology 40 pp 125– (1991) · Zbl 0729.92521
[39] Hellmann 22 (3) pp 534– (2008)
[40] Ims, Trends in Ecology & Evolution 23 (2) pp 79– (2008)
[41] Kausrud, Nature; Physical Science (London) 456 (7218) pp 93– (2008)
[42] GEOPHYS ASTROPHYS FLUID DYN 40 pp 1– (1988) · Zbl 0726.76041
[43] Z ANGEW MATH MECH 75 pp 423– (1995)
[44] J FLUID MECHANICS 396 pp 37– (1999) · Zbl 0982.76037
[45] J COMPUT PHYS 212 pp 188– (2006) · Zbl 1161.76547
[46] 97 pp 209– (1963)
[47] Smith, Journal of Theoretical Biology 254 (2) pp 264– (2008) · Zbl 1400.92445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.