×

A systematic method for efficient computation of full and subsets Zernike moments. (English) Zbl 1200.68266

Summary: A new method is proposed for fast and accurate computation of Zernike moments. This method presents a novel formula for computing exact Zernike moments by using exact complex moments where the exact values of complex moments are computed by mathematical integration of the monomials over digital image pixels. The proposed method is applicable to compute the full set of Zernike moments as well as the subsets of individual order, repetition and an individual moment. A comparison with other conventional methods is performed. The results show the superiority of the proposed method.

MSC:

68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Bharathi, V. S.; Ganesan, L., Orthogonal moments based texture analysis of CT liver images, Pattern Recognition Letters, 29, 13, 1868-1872 (2008)
[3] Broumandnia, A.; Shanbehzadeh, J., Fast Zernike wavelet moments for Farsi character recognition, Image and Vision Computing, 25, 717-726 (2007)
[4] Che, Y.; Qu, F.; Hu, J.; Chen, Z., A geometric robust watermarking algorithm based on DWT-DCT and Zernike moments, Wuhan University Journal of Natural Sciences, 13, 6, 753-758 (2008)
[5] Chenhong, L.; Zhaoyang, L., Zernike moment invariants based iris recognition, LNCS, 3338, 554-561 (2004)
[6] Chong, C. W.; Raveendran, P.; Mukundan, R., A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognition, 36, 731-742 (2003) · Zbl 1028.68142
[7] Chong-Yaw, W.; Raveendran, P., In the computational aspects of Zernike moments, Image and Vision Computing, 25, 967-980 (2007)
[8] Hosny, K. M., Exact and fast computation of geometric moments for gray level, Applied Mathematics and Computation, 189, 2, 1214-1222 (2007) · Zbl 1124.94003
[9] Hosny, K. M., Fast and accurate method for radial moment’s computation, Pattern Recognition Letters, 31, 2, 143-150 (2010)
[10] Hosny, K. M., Fast computation of accurate Zernike moments, Journal of Real-Time Image Processing, 3, 1-2, 97-107 (2008)
[11] Hosny, K. M., Exact Legendre moment computation for gray level images, Pattern Recognition, 40, 12, 3597-3605 (2007) · Zbl 1122.68692
[12] Iskander, D. R.; Collins, M. J.; Davis, B., Optimal modeling of corneal surfaces with Zernike polynomials, IEEE Transactions on Biomedical Engineering, 48, 1, 87-95 (2001)
[13] Khotanzad, A.; Hong, Y. H., Invariant image recognition by Zernike moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 5, 489-497 (1990)
[14] Kim, Y. S.; Kim, W. Y., Content-based trademark retrieval system using visually salient feature, Image and Vision Computing, 16, 931-939 (1998)
[15] Kim, H. S.; Lee, H.-K., Image watermark using Zernike moments, IEEE Transactions on Circuits and Systems for Video Technology, 13, 8, 766-775 (2003)
[16] Kim, H.-J.; Kim, W.-Y., Eye detection in facial images using Zernike moments with SVM, ETRI Journal, 30, 2, 335-337 (2008)
[17] Kim, W. C.; Song, J. Y.; Kim, S. W.; Park, S., Image retrieval model based on weighted visual features determined by relevance feedback, Information Science, 178, 2, 4301-4313 (2008)
[18] Kintner, E. C., On the mathematical properties of the Zernike polynomials, Optica Acta, 23, 8, 679-680 (1976)
[19] Li, S.; Lee, M.-C.; Pun, C.-M., Zernike moments features for shape-based image retrieval, IEEE Transactions on Systems, Man and Cybernetics, Part A, 39, 1, 227-237 (2009)
[20] Liao, S. X.; Pawlak, M., On the accuracy of Zernike moments for image analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 12, 1358-1364 (1998)
[21] Martin, J. A.H.; b Santos, M.; de Lope, J., Orthogonal variant moments features in image analysis, Information Sciences, 180, 6, 846-860 (2010)
[22] Papakostas, G. A.; Boutalis, Y. S.; Karras, D. A.; Mertzios, B. G., A new class of Zernike moments for computer vision applications, Information Sciences, 177, 13, 2802-2819 (2007) · Zbl 1116.68103
[23] Papakostas, G. A.; Koulouriotis, D. E.; Karakasis, E. G., A unified methodology for the efficient computation of discrete orthogonal image moments, Information Sciences, 176, 20, 3619-3633 (2009)
[24] Prata, A.; Rusch, W. V.T., Algorithm for computation of Zernike polynomials expansion coefficients, Applied Optics, 28, 749-754 (1989)
[25] Qu, Y.-D.; Cui, C.-S.; Chen, S.-B.; Li, J.-Q., A fast subpixel edge detection method using Sobel-Zernike moments operator, Image and Vision Computing, 23, 11-17 (2005)
[26] Teague, M. R., Image analysis via the general theory of moments, Journal of the Optical Society of America, 70, 8, 920-930 (1980)
[27] Teh, C. H.; Chin, R. T., On image analysis by the method of moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 4, 496-513 (1988) · Zbl 0709.94543
[28] Wang, L.; Healey, G., Using Zernike moments for the illumination and geometry invariant classification of multispectral texture, IEEE Transactions on Image Processing, 7, 2, 196-203 (1998)
[29] Wang, X.-F.; Huang, D.-S.; Du, J.-X.; Xu, H.; Heutte, L., Classification of plant leaf images with complicated background, Applied Mathematics and Computation, 205, 2, 916-926 (2008) · Zbl 1152.68689
[30] Wee, C. Y.; Paramesran, R.; Takeda, F., New computational methods for full and subset Zernike moments, Information Sciences, 159, 203-220 (2004) · Zbl 1076.68108
[31] Xin, Y.; Liao, S.; Pawlak, M., Circularly orthogonal moments for geometrically robust image watermarking, Pattern Recognition, 40, 12 (2007) · Zbl 1129.68093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.