×

On a conjecture for trigonometric sums and starlike functions. II. (English) Zbl 1200.42002

For \(\mu>0\) let \(s_n^\mu(z)=\sum_{k=0}^n (\mu)_k z^k/k!\), where \((\mu)_k=\mu(\mu+1)\dots (\mu+k-1)\). Denote by \(\mathcal{A}\) the class of analytic functions in the unit disk \(\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}\). For \(f,g\in\mathcal{A}\) we write \(f\prec g\) (\(f\) is subordinate to \(g\) in \(\mathbb{D}\)) if there exists \(w\in\mathcal{A}\) with \(|w(z)|\leq z\) for \(z\in\mathbb{D}\), such that \(f=g\circ w\). Also, for \(\rho\in (0,1]\) we let \(\mu^*(\rho)\) be the unique solution of the integral equation \(\int_0^{(\rho+1)\pi}\sin(t-\rho\pi)t^{\mu-1}dt=0\).
The paper under review is a continuation of the work of S. Koumandos and S. Ruscheweyh [J. Approximation Theory 149, No. 1, 42–58 (2007; Zbl 1135.42001)], where its authors guessed that:
Conjecture. For \(\rho\in(0,1]\) the number \(\mu^*(\rho)\) is indeed maximal number \(\mu(\rho)\) such that for all \(n\in\mathbb{N}\) and \(\mu\in (0,\mu(\rho)]\) we have \[ (1-z)^\rho s_n^\mu(z)\prec \Big(\frac{1+z}{1-z}\Big)^\rho. \]
In the present paper, the authors give a proof of this conjecture in case \(\rho=1/4\). To do this, they prove (based on the properties of completely monotonic functions) a sharp trigonometric inequality. Main result of paper has some applications concerning starlike functions, as more as a corollary, it gives an inequality concerning Gegenbauer polynomials.

MSC:

42A05 Trigonometric polynomials, inequalities, extremal problems
30A10 Inequalities in the complex plane
26D05 Inequalities for trigonometric functions and polynomials
42A32 Trigonometric series of special types (positive coefficients, monotonic coefficients, etc.)
26D20 Other analytical inequalities

Citations:

Zbl 1135.42001
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1965), Dover: Dover New York) · Zbl 0171.38503
[2] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge
[3] Askey, R.; Steinig, J., Some positive trigonometric sums, Trans. Amer. Math. Soc., 187, 1, 295-307 (1974) · Zbl 0244.42002
[4] Dubourdieu, J., Sur un théorème de M. S. Bernstein relatif á la transformation de Laplace-Stieltjes, Compositio Math., 7, 96-111 (1939) · JFM 65.0473.02
[5] Koumandos, S., An extension of Vietoris’s inequalities, Ramanujan J., 14, 1, 1-38 (2007) · Zbl 1138.42002
[6] Koumandos, S., Monotonicity of some functions involving the gamma and psi functions, Math. Comp., 77, 264, 2261-2275 (2008) · Zbl 1210.33002
[7] Koumandos, S., Remarks on some completely monotonic functions, J. Math. Anal. Appl., 324, 2, 1458-1461 (2006) · Zbl 1108.26008
[8] Koumandos, S.; Pedersen, H. L., Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl., 355, 1, 33-40 (2009) · Zbl 1169.33001
[9] Koumandos, S.; Ruscheweyh, S., On a conjecture for trigonometric sums and starlike functions, J. Approx. Theory, 149, 1, 42-58 (2007) · Zbl 1135.42001
[10] Koumandos, S.; Ruscheweyh, S., Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx., 23, 2, 197-210 (2006) · Zbl 1099.30006
[11] Pommerenke, C., Univalent Functions. Vandenhoeck and Ruprecht (1975), Göttingen
[12] Ruscheweyh, S., (Convolutions in Geometric Function Theory. Convolutions in Geometric Function Theory, Seminaire de Math. Sup., vol. 83 (1982), Les Presses de l’Universitè de Montrèal) · Zbl 0499.30001
[13] van Haeringen, H., Completely monotonic and related functions, J. Math. Anal. Appl., 204, 2, 389-408 (1996) · Zbl 0889.26008
[14] Vietoris, L., Über das Vorzeichen gewisser trigonometrischer summen, S.-B. Öster. Akad. Wiss.. S.-B. Öster. Akad. Wiss., Teil II: Anzeiger Öster. Akad. Wiss., 167, 192-193 (1959) · Zbl 0090.04301
[15] Widder, D. V., The Laplace Transform (1946), Princeton University Press: Princeton University Press Princeton · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.