×

\(k\)-nacci sequences in finite triangle groups. (English) Zbl 1197.11025

A \(k\)-sequence in a finite group is a sequence of group elements \(x_0, x_1, \dots\) for which the \(j\)-element set \(\{x_0, x_1, \dots, x_{j-1} \}\) is fixed and each element \(x_n\) is defined by
\[ x_n = \begin{cases} x_0x_1\dots x_{n-1}, & \text{for } j \leq n < k \\ x_{n-k}x_{n-k+1}\dots x_{n-1}, & \text{for } n \geq k \end{cases} \]
The polyhedral group \((l,m,n)\) for \(l, m, n > 1\) is defined by the expression \[ \langle x,y,z: x^l = y^m = z^n = xyz = e \rangle. \]
Some properties of these groups are discussed. For example,
Theorem 2.2: Let \(G_2\) be the group defined by the expression
\[ G_2 = \langle x,y,z: x^2 = y^2 = z^2 = xyz = e \rangle. \]
Then its period is \(k+1\).
Theorem 2.3: Let \(G_n\), \(n > 2\) be the group defined by the expression
\[ G_n = \langle x,y,z: x^n = y^2 = z^2 = xyz = e \rangle. \]
Then its period is \(2k+2\).
The extended triangle group \(E(p,q,r)\) for \(p,q,r > 1\) is defined by the presentation \[ \langle x,y,z: x^2 = y^2 = z^2 = (xy)^p = (yz)^q = (zx)^r = e \rangle. \] Theorem 3.2: Let \(E_2\) be the group defined by the expression
\[ E_2 = \langle x,y,z: x^2 = y^2 = z^2 = (xy)^2 = (yz)^2 = (zx)^2 = e \rangle. \] Then its period is \(k+1\).
An extension of this theorem is formulated and proved.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
20F05 Generators, relations, and presentations of groups
20F12 Commutator calculus
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] C. M. Campbell, H. Doostie, and E. F. Robertson, “Fibonacci length of generating pairs in groups,” in Applications of Fibonacci Numbers, G. E. Bergum, Ed., vol. 3, pp. 27-35, Kluwer Academic Publisher, Dordrecht, The Netherlands, 1990. · Zbl 0741.20025
[2] D. D. Wall, “Fibonacci series module m,” The American Mathematical Monthly, vol. 67, pp. 525-532, 1969. · Zbl 0101.03201 · doi:10.2307/2309169
[3] C. M. Campbell and P. P. Campbell, “On the Fibonacci length of powers of dihedral groups,” in Applications of Fibonacci Numbers, F. T. Howard, Ed., vol. 9, pp. 69-85, Kluwer Academic Publisher, Dordrecht, The Netherlands, 2004. · Zbl 1073.20025
[4] H. Doostie and C. M. Campbell, “Fibonacci length of automorphism groups involving Tribonacci numbers,” Vietnam Journal of Mathematics, vol. 28, no. 1, pp. 57-65, 2000. · Zbl 0986.20034
[5] H. Aydın and R. Dikici, “General Fibonacci sequences in finite groups,” The Fibonacci Quarterly, vol. 36, no. 3, pp. 216-221, 1998. · Zbl 1006.11500
[6] H. Aydın and G. C. Smith, “Finite p-quotients of some cyclically presented groups,” Journal of the London Mathematical Society, vol. 49, no. 1, pp. 83-92, 1994. · Zbl 0807.20029 · doi:10.1112/jlms/49.1.83
[7] E. Karaduman and H. Aydın, “On the relationship between the recurrences in nilpotent groups and the binomial formula,” Indian Journal of Pure and Applied Mathematics, vol. 35, no. 9, pp. 1093-1103, 2004. · Zbl 1089.11011
[8] C. M. Campbell and P. P. Campbell, “The Fibonacci length of certain centro-polyhedral groups,” Journal of Applied Mathematics & Computing, vol. 19, no. 1-2, pp. 231-240, 2005. · Zbl 1079.20047 · doi:10.1007/BF02935801
[9] H. Doostie and M. Maghasedi, “Fibonacci length of direct products of groups,” Vietnam Journal of Mathematics, vol. 33, no. 2, pp. 189-197, 2005. · Zbl 1123.20029
[10] H. Doostie and M. Hashemi, “Fibonacci lengths involving the Wall number k(n),” Journal of Applied Mathematics & Computing, vol. 20, no. 1-2, pp. 171-180, 2006. · Zbl 1083.20031 · doi:10.1007/BF02831931
[11] E. Özkan, “On truncated Fibonacci sequences,” Indian Journal of Pure and Applied Mathematics, vol. 38, no. 4, pp. 241-251, 2007. · Zbl 1144.11016
[12] H. J. Wilcox, “Fibonacci sequences of period n in groups,” The Fibonacci Quarterly, vol. 24, no. 4, pp. 356-361, 1986. · Zbl 0603.10011
[13] Steven W. Knox, “Fibonacci sequences in finite groups,” The Fibonacci Quarterly, vol. 30, no. 2, pp. 116-120, 1992. · Zbl 0758.20006
[14] C. M. Campbell and P. P. Campbell, “The Fibonacci lengths of binary polyhedral groups and related groups,” Congressus Numerantium, vol. 194, pp. 95-102, 2009. · Zbl 1242.20036
[15] J. H. Conway, H. S. M. Coxeter, and G. C. Shephard, “The centre of a finitely generated group,” Tensor. New Series, vol. 25, pp. 405-418, 1972. · Zbl 0257.20029
[16] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin, Germany, 3rd edition, 1972. · Zbl 0257.20029
[17] M. D. E. Conder, “Group actions on graphs, maps and surfaces with maximum symmetry,” in Groups St. Andrews 2001 in Oxford, C. M. Campbell, E. F. Robertson, and G. C. Smith, Eds., vol. 1, pp. 63-91, Cambridge University Press, Cambridge, UK, 2003. · Zbl 1051.20020
[18] M. A. Albar and W. M. Al-Hamdan, “The triangle groups,” Rendiconti del Seminario Matematico della Universita di Padova, vol. 89, pp. 103-111, 1993. · Zbl 0818.20032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.