×

An approach via fractional analysis to non-linearity induced by coarse-graining in space. (English) Zbl 1195.37054

Loosely speaking, a coarse-grained space is a space in which the generic point is not infinitely thin, but rather has a thickness; and here this feature is modeled as a space in which the generic increment is not \(dx\), but rather \((dx)^\alpha, 0<\alpha<1\). The purpose of the article is to analyse the non-linearity induced by this coarse-graining effect. This approach via \((dx)^\alpha\) leads us to the use of fractional analysis which thus provides models in the form of nonlinear differential equations of fractional order. Two illustrative examples are considered. In the first one, one shows that a particle which has a Gaussian white noise in a coarse-grained space exhibits a trajectory which looks like a generalized fractional Brownian motion. The second example shows how a simple one-dimensional linear dynamics is converted into a non-linear system of fractional order.

MSC:

37L99 Infinite-dimensional dissipative dynamical systems
60J65 Brownian motion
60H40 White noise theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Accardi, L.; Boukas, A., White noise calculus and stochastic calculus, (Stochastic Analysis: Classical and Quantum (2005), Word Sci. Publ.), 260-300 · Zbl 1136.60050
[2] Hida, T.; Huo, H. H.; Potthoff, J.; Streit, L., White Noise. An Infinite Dimensional Calculus (1993), Kluwer Academic Publisher: Kluwer Academic Publisher Dordrecht
[3] Hida, T., Selected Papers (2001), Word Scientific
[4] C.A. Cornell, Stochastic process models in structural engineering, Technical report 34, Department of civil engineering, Stanford University, Stanford, CA, 1964; C.A. Cornell, Stochastic process models in structural engineering, Technical report 34, Department of civil engineering, Stanford University, Stanford, CA, 1964
[5] Gikhman, I. I.; Skorohod, A. W., Stochastic Differential Equations (1972), Springer-Verlag: Springer-Verlag Berlin
[6] Itô, K., On stochastic differential equations, Mem. Amer. Soc., 4 (1951)
[7] Stratonovich, R. L., A new form of representing stochastic integrals and equations, J. SIAM. Control, 4, 362-371 (1966) · Zbl 0143.19002
[8] Tsybakov, B.; Georganas, N., Self-similar processes in communication network, IEEE Trans. Inform. Theory, 44, 1713-1725 (1998) · Zbl 0988.90003
[9] Mandelbrot, B. B.; Cioczek-Georges, R., A class of micropulses and antipersistent fractional Brownian motions, Stochastic Process. Appl., 60, 1-18 (1995) · Zbl 0846.60055
[10] Mandelbrot, B. B.; Cioczek-Georges, R., Alternative micropulses and fractional Brownian motion, Stochastic Process. Appl., 64, 143-152 (1996) · Zbl 0879.60076
[11] Jumarie, G., Stochastic differential equations with fractional Brownian motion input, Internat. J. Systems Sci., 6, 1113-1132 (1993) · Zbl 0771.60043
[12] Jumarie, G., Further results on the modelling of complex fractals in finance scaling observation and optimal portfolio selection, Syst. Anal. Model. Simul., 45, 10, 1483-1499 (2002) · Zbl 1092.91025
[13] Jumarie, G., Stock exchange dynamics involving both Gaussian and Poissonian white noises: Approximation solution via a symbolic stochastic calculus, Insurance: Math. Econom., 31, 179-189 (2002) · Zbl 1055.91027
[14] Jumarie, G., Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker-Planck equations, Chaos Solitons Fractals, 4 (2004) · Zbl 1068.60053
[15] Jumarie, G., On the representation of fractional Brownian motion as an integral with respect to \((d t)^\alpha \), Appl. Math. Lett., 18, 739-748 (2005) · Zbl 1082.60029
[16] Jumarie, G., On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Appl. Math. Lett., 18, 817-826 (2005) · Zbl 1075.60068
[17] Jumarie, G., Fourier’s transform of fractional order via Mittag-Leffler function and modified Riemann-Liouville derivative, Journal of Applied Mathematics and Informatics, 26, 5-6, 1101-1121 (2008)
[18] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22, 378-385 (2009) · Zbl 1171.26305
[19] Anh, V. V.; Leonenko, N., Scaling laws for fractional diffusion-wave equations with singular initial data, Statist. Probab. Lett., 48, 239-252 (2000) · Zbl 0970.35174
[20] Anh, V. V.; Leonenko, N., Spectral theory of renormalized fractional random fields, Teor. Imovirnost. ta Matem. Statyst., 66, 3-14 (2002) · Zbl 1029.60040
[21] Caputo, M., Linear model of dissipation whose Q is almost frequency dependent II, Geophys. J. R. Ast. Soc., 13, 529-539 (1967)
[22] Djrbashian, M. M.; Nersesian, S. B., Fractional derivative and the Cauchy problem for differential equations of fractional order, Izv. Acad. Nauk Armjandkoi SSR, 3, 1, 3-29 (1968), (in Russian)
[23] Kolwankar, K. M.; Gangal, A. D., Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys., 48, 49-68 (1997)
[24] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80, 214-217 (1998) · Zbl 0945.82005
[25] Barkai, E., Fractional Fokker-Planck equation solutions and applications, Phys. Rev. E, 63, 1-17 (2001)
[26] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev., 61, 1, 132-138 (2000)
[27] El-Sayed, A., Fractional order diffusion-wave equation, Int. J. Theor. Phys., 35, 311-322 (1996) · Zbl 0846.35001
[28] El-Sayed, A. M.A.; Aly, M. A.E., Continuation theorem of fractional order evolutionary integral equations, J. Appl. Math. Comput., 2, 525-534 (2002) · Zbl 1011.34047
[29] Hanyga, A., Multidimensional solutions of time-fractional diffusion-wave equations, Proc. Roy. Soc. London, A, 458, 933-957 (2002) · Zbl 1153.35347
[30] Huang, F.; Liu, F., The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Comput., 19, 1-2, 179-190 (2005) · Zbl 1085.35003
[31] Kober, H., On fractional integrals and derivatives, Quart. J. Math. Oxford, 11, 193-215 (1940) · JFM 66.0520.02
[32] Letnivov, A. V., Theory of differentiation of fractional order, Math. Sb., 3, 1-7 (1868)
[33] Liouville, J., On the calculus of differentials with arbitrary orders, J. Ecole Polytechnique, 13, 71-162 (1832), (in French)
[34] Mandelbrot, B. B.; van Ness, J. W., Fractional Brownian motions fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[35] Mandelbrot, B. B., Fractals and Scaling in Finance: Discontinuity Concentration Risk (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 1005.91001
[36] Muslih, S. I.; Baleanu, D.; Rabei, E. M., Fractional Hamilton’s equation of motion in fractional time, Cent. Eur. J. Phys., 5, 549-557 (2007)
[37] Osler, T. J., Taylor’s series generalized for fractional derivatives and applications, SIAM. J. Math. Anal., 2, 1, 37-47 (1971) · Zbl 0215.12101
[38] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[39] Saichev, A.; Zaslavsky, G., Fractional kinetic equations: Solutions and applications, Chaos, 7, 753-764 (1997) · Zbl 0933.37029
[40] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 1, 134-144 (1989) · Zbl 0692.45004
[41] Wyss, W., The fractional Black-Scholes equation, Fract. Calc. Appl. Anal., 3, 1, 51-61 (2000) · Zbl 1058.91045
[42] Dai, W.; Heyde, C. C., Itô’s formula with respect to fractional Brownian motion and its application, J. Appl. Math. Stochastic Anal., 9, 4, 439-448 (1996) · Zbl 0867.60029
[43] Decreusefond, L.; Ustunel, A. S., Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214 (1999) · Zbl 0924.60034
[44] Duncan, T. E.; Hu, Y.; Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion I Theory, SIAM J. Control Optim., 38, 582-612 (2000) · Zbl 0947.60061
[45] Hu, Y.; Øksendal, B., Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 1-32 (2003) · Zbl 1045.60072
[46] Kochubei, A. N., Fractional order diffusion, J. Differential Equations, 26, 4, 485-492 (1990) · Zbl 0729.35064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.