×

Exact solutions to mKdV equation with variable coefficients. (English) Zbl 1195.35270

Summary: A special mKdV with variable coefficients is considered. A transformation of variables is first applied in order to obtain a mKdV equation with constant coefficients. Some its one-, two- and three-soliton as well as breather-type soliton solutions are derived by using Hirorta’s bilinear approach.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
35A30 Geometric theory, characteristics, transformations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., Korteweg-de Vries equation and generalizations. II. existence of conservation laws and constants of motion, J. Math. Phys., 9, 1204 (1968) · Zbl 0283.35019
[2] Wadati, M., The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 32, 1681 (1972)
[3] Wadati, M., The modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 34, 1289 (1973) · Zbl 1334.35299
[4] Hirota, R., Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 33, 1456 (1972)
[5] Fu, Z.; Liu, S.; Liu, S., New solutions to mKdV equation, Phys. Lett. A, 326, 364-374 (2004) · Zbl 1138.35393
[6] Matsutani, S., Hyperelliptic solutions of modified Korteweg-de Vries equation of genus \(g\): essentials of the Miura transformation, J. Phys. A: Math. Gen., 35, 4321 (2002) · Zbl 1040.37063
[7] Khater, A. H.; El-Kakaawy, O. H.; Callebaut, D. K., Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma, Phys. Scr., 58, 545 (1998)
[8] Ono, H., Soliton fission in anharmonic lattices with reflectionless inhomogeneity, J. Phys. Soc. Jpn., 61, 4336-4343 (1992)
[9] Helfrich, K. R.; Melville, W. K.; Miles, J. W., On interfacial solitary waves over slowly varying topography, J. Fluid Mech., 149, 305-317 (1984) · Zbl 0566.76018
[10] Ziegler, V.; Dinkel, J.; Setzer, C.; Lonngren, K. E., On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos, Solitons Fractals, 12, 1719-1728 (2001) · Zbl 1022.35063
[11] Lonngren, K. E., Ion acoustic soliton experiments in a plasma, Opt. Quantum Electron., 30, 615-630 (1998)
[12] Watanabe, S., Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Jpn., 53, 950-956 (1984)
[13] Matsutani, S.; Tsuru, H., Reflectionless quantum wire, J. Phys. Soc. Jpn., 60, 3640-3644 (1991)
[14] Nagatani, T., TDGL and mKdV equations for jamming transition in the lattice models of traffic, Phys. A, 264, 571-581 (1999)
[15] Komatsu, T. S.; Sasa, S. I., Kink soliton characterizing traffic congestion, Phys. Rev. E, 52, 5574-5582 (1995)
[16] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Waves (1982), Academic Press: Academic Press London · Zbl 0496.35001
[17] Kevrekidis, P. G.; Khare, A.; Saxena, A., Breather lattice and its stabilization for the modified Korteweg-de Vries equation, Phys. Rev. E, 68 (2003)
[18] Kruglov, V. I.; Peacock, A. C.; Harvey, J. D., Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients, Phys. Rev. Lett., 90, 113902 (2003)
[19] Soloman Raju, T.; Panigrahi, P. K.; Porsezian, K., Nonlinear compression of solitary waves in asymmetric twin-core fibers, Phys. Rev. E, 71, 026608 (2005)
[20] Soloman Raju, T.; Panigrahi, P. K.; Porsezian, K., Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain, Phys. Rev. E, 72, 046612 (2005)
[21] Salas Alvaro, H., Symbolic computation of solutions for a forced Burgers equation, Applied Mathematics and Computation, 216, 18-26 (2010) · Zbl 1185.35238
[22] Salas Alvaro, H.; Gómez, C. A., Computing exact solutions for some fifth KdV equations with forcing term, Applied Mathematics and Computation, 204, 257-260 (2008) · Zbl 1160.35526
[23] Salas Alvaro, H.; Gómez, C. A., Exact solutions for a third-order KdV equation with variable coefficients and forcing term, Mathematical Problems in Engineering (2009), Hindawi Pub. Corp. · Zbl 1188.35168
[24] Alvaro, Salas, Some solutions for a type of generalized Sawada-Kotera equation, Applied Mathematics and Computation, 196, 812-817 (2008) · Zbl 1132.35461
[25] Salas Alvaro, H., Exact solutions for the general fifth KdV equation by the exp function method, Applied Mathematics and Computation, 205, 291-297 (2008) · Zbl 1160.35525
[26] Salas Alvaro, H.; Gómez, C. A., Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation (KdV7), Mathematical Problems in Engineering (2010) · Zbl 1191.35236
[27] Salas Alvaro, H.; Gómez, C. A.; Escobar, L.; José, G., Exact solutions for the general fifth-order KdV equation by the extended tanh method, Journal of Mathematical Sciences: Advances and Applications, 1, 2, 305-310 (2008) · Zbl 1179.65132
[28] Salas Alvaro, H.; Gómez, C. A., A practical approach to solve coupled systems of nonlinear PDE’s, Journal of Mathematical Sciences: Advances and Applications, 3, 1, 101-107 (2009) · Zbl 1179.65131
[29] Salas Alvaro, H., Computing exact solutions to a generalized Lax seventh-order forced KdV equation (KdV7), Applied Mathematics and Computation, 216, 2333-2338 (2010) · Zbl 1194.35387
[31] Salas Alvaro, H., New solutions to Korteweg-de Vries (kdV) equation by the Riccati equation expansion method, International Journal of Applied Mathematics (IJAM), 22, 1169-1177 (2009) · Zbl 1193.35198
[32] Salas Alvaro, H., Symbolic computation of exact solutions to KdV equation, Canadian Applied Mathematics Quarterly, 16 (2008) · Zbl 1200.35270
[34] Anjan, Biswas, Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion, Communications in Nonlinear Science and Numerical Simulation, 14, 3503-3506 (2009) · Zbl 1221.35306
[35] Ryogo, Hirota, The Direct Method in Soliton Theory (2004), Cambridge University Press · Zbl 1099.35111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.