Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1195.34033
Hao, Xinan; Liu, Lishan; Wu, Yonghong
Existence and multiplicity results for nonlinear periodic boundary value problems.
(English)
[J] Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 9-10, 3635-3642 (2010). ISSN 0362-546X

Consider the following periodic boundary value problems \align -u^{\prime \prime }+a\left( t\right) u &=\lambda f\left( t,u\right) ,\text{ \ \ }0\leq t\leq 2\pi , \\ u\left( 0\right) &=u\left( 2\pi \right) ,\text{ \ \ }u^{\prime }\left( 0\right) =u^{\prime }\left( 2\pi \right) ,\endalign and \align u^{\prime \prime }+a\left( t\right) u &=\lambda f\left( t,u\right) ,\text{ \ \ }0\leq t\leq 2\pi , \\ u\left( 0\right) &=u\left( 2\pi \right) ,\text{ \ \ }u^{\prime }\left( 0\right) =u^{\prime }\left( 2\pi \right) ,\endalign where $a\in L_{1}\left( 0,2\pi \right)$, $f:\left[ 0,2\pi \right] \times \lbrack 0,+\infty )\rightarrow \lbrack 0,+\infty )$\ is continuous, $\lambda$ is a positive parameter. The criteria for the existence, nonexistence and multiplicity of positive solutions are established by using the Global continuation theorem, fixed point index theory and approximate method. The results obtained herein generalize and complement some previous findings of [{\it J. R. Graef, L. Kong} and {\it H. Wang}, J. Differ. Equations 245, No.~5, 1185--1197 (2008; Zbl 1203.34028)] and some other known results.
[Khanlar R. Mamedov (Mersin)]
MSC 2000:
*34B15 Nonlinear boundary value problems of ODE
34B18 Positive solutions of nonlinear boundary value problems
47N20 Appl. of operator theory to differential and integral equations

Keywords: periodic boundary value problem; positive solution; global continuation theorem; fixed point index; existence; multiplicity

Citations: Zbl 1203.34028

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences