×

Simplicial complexes and minimal free resolution of monomial algebras. (English) Zbl 1195.13015

Let \(\Bbbk\) be a field, \(S\) a commutative semigroup generated by \(n_1,\ldots, n_r\) so that \(S\cap (-S)=\{0\}\) and \(R=\Bbbk[x_1,\ldots, x_r]\). The \(S\)-degree of \(x^a=x_1^{a_1}\cdots x_r^{a_r}\) is \(\sum_{i=1}^r a_i n_i\) and the \(S\)-graded Nakayama Lemma applies. If \(I\) is the toric ideal generated by all \(S\)-homogeneous binomials then \(R/I\) is \(S\)-graded and one can consider the minimal free \(S\)-graded resolution of \(R/I\). Denote by \(s_{j+1,m}\) the multigraded \(j+1\)-Betti number of \(R/I\) of degree \(m\). It is well known that \(s_{j+1,m}\) equals the rank of the \(j\)-reduced homology group of the simplicial complex \(\Delta_m=\{ F\subset [r]:\;m-\sum_{i\in F}n_i\in S\}\).
The authors use the simplicial complex \(\nabla_m=\{ F\subset C_m:\;\text{gcd}(F)\neq 1\}\) where \(C_m\) consists of all monomials of \(S\)-degree \(m\). They prove that \(s_{j+1,m}\) equals the rank of the \(j\)-reduced homology group of \(\nabla_m\). Given a monomial term order on \(R\), they proceed to fix a particular basis of \(\tilde{H}_j(\nabla_m)\) for \(j\geq 0\). For this basis they show how to get \(j+1\)-syzygies of \(R/I\) of degree \(m\) and produce part of the minimal free resolution of \(R/I\). The result on the Betti numbers was also proved independently by H. Charalambous and A. Thoma [see for example Contemp. Math., No. 502, 33–44 (2009; Zbl 1183.13017)].

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes

Citations:

Zbl 1183.13017
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Briales-Morales, E.; Campillo-López, A.; Pisón-Casares, P.; Vigneron-Tenorio, A., Minimal resolutions of lattice ideals and integer linear programming, Rev. Mat. Iberoamericana, 19, 2, 287-306 (2003) · Zbl 1094.13017
[3] Briales, E.; Campillo, A.; Marijuán, C.; Pisón, P., Combinatorics of syzygies for semigroup algebra, Collect. Math., 49, 239-256 (1998) · Zbl 0913.20036
[4] Charalambous, H.; Katsabekis, A.; Thoma, A., Minimal systems of binomial generators and the indispensable complex of a toric ideal, Proc. Amer. Math. Soc., 135, 3443-3451 (2007) · Zbl 1127.13018
[6] Peeva, I.; Sturmfels, B., Generic lattice ideals, J. Amer. Math. Soc., 11, 363-373 (1998) · Zbl 0905.13005
[7] Sturmfels, B., Gröbner bases and convex polytopes, (University Lecture Series, vol. 8 (1996), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0856.13020
[8] Pisón-Casares, P.; Vigneron-Tenorio, A., On Lawrence semigroups, J. Symbolic Comput., 43, 804-810 (2008) · Zbl 1166.13028
[9] Campillo, A.; Gimenez, P., Syzygies of affine toric varieties, J. Algebra, 225, 142-161 (2000) · Zbl 0973.14027
[10] Gilmer, R., Commutative semigroup rings, (Chicago Lectures in Mathematics (1984), University of Chicago Press: University of Chicago Press Chicago, IL) · Zbl 0169.05403
[11] Bruns, W.; Herzog, J., Cohen-Macaulay rings, (Cambridge studies in advanced mathematics, vol. 39 (1993), Cambridge University Press) · Zbl 0909.13005
[12] Miller, E.; Sturmfels, B., (Combinatorial Commutative Algebra. Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227 (2005), Springer: Springer New York) · Zbl 1090.13001
[13] Rosales, J. C.; García-Sánchez, P. A., Finitely generated commutative monoids (1999), Nova Science Publishers, Inc: Nova Science Publishers, Inc Commack, NY · Zbl 0966.20028
[14] Briales, E.; Campillo, A.; Marijuán, C.; Pisón, P., Minimal systems of generetors for ideals of semigroups, J. Pure Appl. Algebra, 124, 7-30 (1998) · Zbl 0913.20036
[15] Rotman, J. J., An introduction to algebraic topology, (GTM, vol. 119 (1993), Springer-Verlag) · Zbl 0661.55001
[17] Pisón-Casares, P.; Vigneron-Tenorio, A., \(N\)-solutions to linear systems over \(Z\), Linear Algebra Appl., 384, 135-154 (2004) · Zbl 1126.13020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.