×

A control reduced primal interior point method for a class of control constrained optimal control problems. (English) Zbl 1190.90278

Summary: A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparatively coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples.

MSC:

90C51 Interior-point methods
49J15 Existence theories for optimal control problems involving ordinary differential equations

Software:

NewtonLib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arada, N.; Casas, E.; Tröltzsch, F., Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23, 201-229 (2002) · Zbl 1033.65044 · doi:10.1023/A:1020576801966
[2] Bornemann, F. A., An adaptive multilevel approach to parabolic equations III. 2D error estimation and multilevel preconditioning, IMPACT Comput. Sci. Eng., 4, 1-45 (1992) · Zbl 0745.65055 · doi:10.1016/0899-8248(92)90015-Z
[3] Braess, D.; Blömer, C., A multigrid method for a parameter dependent problem in solid mechanics, Numer. Math., 57, 747-761 (1990) · Zbl 0665.65077 · doi:10.1007/BF01386441
[4] Casas, E.; Tröltzsch, F.; Barbu, V., Error estimates for linear-quadratic elliptic control problems, Analysis and Optimization of Differential Systems, 89-100 (2003), Dordrecht: Kluwer Academic, Dordrecht · Zbl 1027.65088
[5] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1987), Amsterdam: North-Holland, Amsterdam
[6] Deuflhard, P., Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms (2004), Berlin: Springer, Berlin · Zbl 1056.65051
[7] Deuflhard, P., Seebaß, M., Stalling, D., Beck, R., Hege, H.-C.: Hyperthermia treatment planning in clinical cancer therapy: modelling, simulation and visualization. In: Sydow, A. (ed.) Proc. of the 15th IMACS World Congress 1997 on Scientific Computation: Modelling and Applied Mathematics, vol. 3, pp. 9-17. Wissenschaft und Technik Verlag (1997)
[8] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1977), Berlin: Springer, Berlin · Zbl 0361.35003
[9] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Optim., 13, 865-888 (2002) · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[10] Hinze, M., A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30, 45-63 (2005) · Zbl 1074.65069 · doi:10.1007/s10589-005-4559-5
[11] Kummer, B., Generalized Newton and NCP-methods: convergence, regularity and actions, Discuss. Math. Differ. Incl., 20, 2, 209-244 (2000) · Zbl 1016.90058
[12] Meyer, C.; Rösch, A., Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43, 3, 970-985 (2004) · Zbl 1071.49023 · doi:10.1137/S0363012903431608
[13] Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Phys., 1, 93-122 (1948)
[14] Prüfert, U., Tröltzsch, F., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. (2007, to appear) · Zbl 1144.90511
[15] Rösch, A., Error estimates for linear-quadratic control problems with control constraints, Optim. Meth. Softw., 21, 1, 121-134 (2006) · Zbl 1085.49042 · doi:10.1080/10556780500094945
[16] Schiela, A.: The control reduced interior point method. Doctoral thesis, Freie Universität Berlin, Dept. Math. and Comp. Sci. (2006)
[17] Schiela, A., Weiser, M.: Superlinear convergence of the control reduced interior point method for PDE constrained optimization. Comput. Optim. Appl. (2007, to appear) · Zbl 1181.90287
[18] Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation thesis, Fakultät für Mathematik, Technische Universität München (2002)
[19] Ulbrich, M., Ulbrich, S.: Primal-dual interior point methods for PDE-constrained optimization. Technical report, TU Darmstadt (2006) · Zbl 1171.90018
[20] Weiser, M., Interior point methods in function space, SIAM J. Control Optim., 44, 5, 1766-1786 (2005) · Zbl 1132.49024 · doi:10.1137/S0363012903437277
[21] Weiser, M.; Deuflhard, P., Inexact central path following algorithms for optimal control problems, SIAM J. Control Optim., 46, 3, 792-815 (2007) · Zbl 1151.65328 · doi:10.1137/S0363012903396851
[22] Weiser, M.; Schiela, A., Function space interior point methods for PDE constrained optimization, PAMM, 4, 1, 43-46 (2004) · Zbl 1354.49052 · doi:10.1002/pamm.200410011
[23] Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. I (1986), New York: Springer, New York · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.