×

Stochastic dynamic programming applied to hydrothermal power systems operation planning based on the convex hull algorithm. (English) Zbl 1189.90106

Summary: This paper presents a new approach for the expected cost-to-go functions modeling used in the stochastic dynamic programming (SDP) algorithm. The SDP technique is applied to the long-term operation planning of electrical power systems. Using state space discretization, the Convex Hull algorithm is used for constructing a series of hyperplanes that composes a convex set. These planes represent a piecewise linear approximation for the expected cost-to-go functions. The mean operational costs for using the proposed methodology were compared with those from the deterministic dual dynamic problem in a case study, considering a single inflow scenario. This sensitivity analysis shows the convergence of both methods and is used to determine the minimum discretization level. Additionally, the applicability of the proposed methodology for two hydroplants in a cascade is demonstrated. With proper adaptations, this work can be extended to a complete hydrothermal system.

MSC:

90C15 Stochastic programming
90C39 Dynamic programming

Software:

Qhull
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. V. F. Pereira, “Optimal stochastic operation of large hidroelectric systems,” Electrical Power and Energy Systems, vol. 11, pp. 161-169, 1989. · doi:10.1016/0142-0615(89)90025-2
[2] J. C. Grygier and J. R. Stedinger, “Algorithms for optimizing hydropower system operation,” Water Resources Research, vol. 21, no. 1, pp. 1-10, 1985. · doi:10.1029/WR021i001p00001
[3] E. Ni, X. Guan, and R. Li, “Scheduling hydrothermal power systems with cascaded and head-dependent reservoirs,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 1127-1132, 1999. · doi:10.1109/59.780941
[4] L. A. Terry, M. V. F. Pereira, T. A. A. Neto, L. F. C. A. Silva, and P. R. H. Sales, “Brazilian national hydrothermal electrical generating system,” Interfaces, vol. 16, no. 1, pp. 16-38, 1986. · doi:10.1287/inte.16.1.16
[5] M. V. F. Pereira and L. M. V. G. Pinto, “Stochastic optimization of a multireservoir hydroelectric system-a decomposition approach,” Water Resources Research, vol. 21, no. 6, pp. 779-792, 1985. · doi:10.1029/WR021i006p00779
[6] J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, vol. 4, pp. 238-252, 1962. · Zbl 0109.38302 · doi:10.1007/BF01386316
[7] B. G. Gorenstin, J. P. Costa, and M. V. F. Pereira, “Stochastic optimization of a hydro-thermal system,” IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 791-797, 1992.
[8] M. V. F. Pereira, “Optimal stochastic operations scheduling of large hydroelectric systems,” International Journal of Electrical Power & Energy Systems, vol. 11, no. 3, pp. 161-169, 1989. · doi:10.1016/0142-0615(89)90025-2
[9] N. V. Arvanitidis and J. Rosing, “Composite representation of a multireservoir hydroelectric power system,” IEEE Transactions on Power Apparatus and Systems, vol. 89, no. 2, pp. 319-326, 1970. · doi:10.1109/TPAS.1970.292595
[10] N. V. Arvanitidis and J. Rosing, “Optimal operation of multireservoir systems using a composite representation,” IEEE Transactions on Power Apparatus and Systems, vol. 89, no. 2, pp. 327-335, 1970. · doi:10.1109/TPAS.1970.292596
[11] M. Zambelli, T. G. Siqueira, M. Cicogna, and S. Soares, “Deterministic versus stochastic models for long term hydrothermal scheduling,” in Proceedings of the IEEE Power Engineering Society General Meeting(PES ’06), Montreal, Canada, 2006. · doi:10.1287/inte.16.1.16
[12] V. R. Sherkat, R. Campo, K. Moslehi, and E. O. Lo, “Stochastic long term hydrothermal optimization for a multireservoir system,” IEEE Transactions on Power Apparatus and Systems, vol. 104, no. 8, pp. 2040-2050, 1985. · doi:10.1109/TPAS.1985.318779
[13] R. W. Fcrrero, J. F. Rivera, and S. M. Shahidehpour, “A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems,” IEEE Transactions on Power Systems, vol. 13, no. 4, pp. 1534-1540, 1998. · doi:10.1109/59.736302
[14] P. Kall and S. W. Wallace, Stochastic Programming, Wiley-Interscience Series in Systems and Optimization, John Wiley& Sons, New York, NY, USA, 1995.
[15] J. W. Labadie, “Optimal operation of multireservoir systems: state-of-the-art review,” Journal of Water Resources Planning and Management, vol. 130, no. 2, pp. 93-111, 2004. · doi:10.1061/(ASCE)0733-9496(2004)130:2(93)
[16] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Boston, Mass, USA, 1996. · Zbl 0924.68163
[17] A. Castelletti, D. de Rigo, A. E. Rizzoli, R. Soncini-Sessa, and E. Weber, “Neuro-dynamic programming for designing water reservoir network management policies,” Control Engineering Practice, vol. 15, no. 8, pp. 1031-1038, 2007. · doi:10.1016/j.conengprac.2006.02.011
[18] E. G. Carrano, R. T. N. Cardoso, R. H. C. Takahashi, C. M. Fonseca, and O. M. Neto, “Power distribution network expansion scheduling using dynamic programming genetic algorithm,” IET Generation, Transmission and Distribution, vol. 2, no. 3, pp. 444-455, 2008. · doi:10.1049/iet-gtd:20070174
[19] D. Zhao, J. Yi, and D. Liu, “Particle swarm optimized adaptive dynamic programming,” in Proceedings of the IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, pp. 32-37, Honolulu, Hawaii, USA, 2007. · doi:10.1109/ADPRL.2007.368166
[20] P. T. Leite, A. A. F. M. Carneiro, and A. C. P. C. F. Carvalho, “Energetic operation planning using genetic algorithms,” IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 173-179, 2002. · doi:10.1109/59.982210
[21] C. Cervellera, V. C. P. Chen, and A. Wen, “Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization,” European Journal of Operational Research, vol. 171, no. 3, pp. 1139-1151, 2006. · Zbl 1116.90123 · doi:10.1016/j.ejor.2005.01.022
[22] L. Martinez and S. Scares, “Primal and dual stochastic dynamic programming in long term hydrothermal scheduling,” in Proceedings of the IEEE PES Power Systems Conference and Exposition, vol. 3, pp. 1283-1288, New York, NY, USA, October 2004.
[23] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Transactions on Mathematical Software, vol. 22, no. 4, pp. 469-483, 1996. · Zbl 0884.65145 · doi:10.1145/235815.235821
[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, Cambridge, Mass, USA, 2nd edition, 2001. · Zbl 1047.68161
[25] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1957. · Zbl 0077.13605
[26] E. L. da Silva and E. C. Finardi, “Planning of hydrothermal systems using a power plant individualistic representation,” in Proceedings of the IEEE Port Power Tech Conference, vol. 3, Porto, Portugal, 2001. · Zbl 05107478 · doi:10.1109/TPDS.2003.1225052
[27] T. W. Archibald, K. I. M. McKinnon, and L. C. Thomas, “Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming,” Naval Research Logistics, vol. 53, no. 3, pp. 217-225, 2006. · Zbl 1122.90389 · doi:10.1002/nav.20134
[28] M. V. F. Pereira, N. Campodónico, and R. Kelman, “Long term hydro scheduling based on stochastic models,” in Proceedings of the International Conference on Electric Power Systems Operation and Management (EPSOM ’98), Zurich, Switzerland, 1998. · doi:10.1016/0142-0615(89)90025-2
[29] M. P. Cristobal, L. F. Escudero, and J. F. Monge, “On stochastic dynamic programming for solving large-scale planning problems under uncertainty,” Computers & Operations Research, vol. 36, no. 8, pp. 2418-2428, 2009. · Zbl 1179.90243 · doi:10.1016/j.cor.2008.09.009
[30] E. L. da Silva and E. C. Finardi, “Parallel processing applied to the planning of hydrothermal systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 8, pp. 721-729, 2003. · Zbl 05107478 · doi:10.1109/TPDS.2003.1225052
[31] A. L. Diniz and M. E. P. Maceira, “A four-dimensional model of hydro generation for the short-term hydrothermal dispatch problem considering head and spillage effects,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1298-1308, 2008. · doi:10.1109/TPWRS.2008.922253
[32] E. L. da Silva, Forma de Pre\ccos em Mercados de Energia Elétrica, Sagra Luzzatto, Porto Alegre, Brazil, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.