×

Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments. (English) Zbl 1187.68443

Summary: This paper presents an image reconstruction method for X-ray tomography from limited range projections. It makes use of the discrete Radon transform and a set of discrete orthogonal Tchebichef polynomials to define the projection moments and the image moments. By establishing the relationship between these two sets of moments, we show how to estimate the unknown projections from known projections in order to improve the image reconstruction. Simulation results are provided in order to validate the method and to compare its performance with some existing algorithms.

MSC:

68T10 Pattern recognition, speech recognition
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Barrett, H.; Swindle, W., Radiological Imaging: The Theory of Image Formation, Detection and Processing (1981), Academic Press: Academic Press New York
[2] Herman, G. T., Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (1980), Academic Press: Academic Press New York · Zbl 0538.92005
[3] Natterer, F., The Mathematics of Computerized Tomography (1986), Wiley: Wiley New York · Zbl 0617.92001
[4] Salzman, D., A method of general moments for orienting 2D projections of unknown 3D objects, Comput. Vis. Graph. Image Process., 50, 129-135 (1990)
[5] Goncharev, A. B., Methods of integral geometry and recovering a function with compact support from its projections in unknown directions, Acta Appl. Math., 11, 213-222 (1988) · Zbl 0654.44004
[6] Milanfar, P. M.; Karl, W. C.; Willsky, A. S., A moment-based variational approach to tomographic reconstruction, IEEE Trans. Image Process., 5, 459-470 (1996)
[7] Basu, S.; Bresler, Y., Uniqueness of tomography with unknown view angles, IEEE Trans. Image Process., 9, 1094-1106 (2000) · Zbl 0969.65113
[8] Basu, S.; Bresler, Y., Feasibility of tomography with unknown view angles, IEEE Trans. Image Process., 9, 1107-1122 (2000) · Zbl 0969.65114
[9] Wang, T. J.; Sze, T. W., The image moment method for the limited range CT image reconstruction and pattern recognition, Pattern Recognition, 34, 2145-2154 (2001) · Zbl 0991.68077
[10] Shu, H. Z.; Zhou, J.; Han, G. N.; Luo, L. M.; Coatrieux, J. L., Image reconstruction from limited range projections using orthogonal moments, Pattern Recognition, 40, 670-680 (2007) · Zbl 1118.68183
[11] Mukundan, R.; Ong, S. H.; Lee, P. A., Image analysis by Tchebichef moments, IEEE Trans. Image Process., 10, 1357-1364 (2001) · Zbl 1037.68782
[12] Yap, P. T.; Raveendran, P.; Ong, S. H., Image analysis by Krawtchouk moments, IEEE Trans. Image Process., 12, 1367-1377 (2003)
[13] Zhu, H. Q.; Shu, H. Z.; Liang, J.; Luo, L. M.; Coatrieux, J. L., Image analysis by discrete orthogonal Racah moments, Signal Process., 87, 687-708 (2007) · Zbl 1186.94405
[14] Zhu, H. Q.; Shu, H. Z.; Liang, J.; Luo, L. M.; Coatrieux, J. L., Image analysis by discrete orthogonal dual-Hahn moments, Pattern Recognition Lett., 28, 1688-1704 (2007)
[15] J.P. Guédon, N. Normand, The Mojette transform: the first ten years, in discrete geometry for computer imagery, in: Lecture Notes in Computer Science, vol. 3429/2005, Springer, Berlin, Heidelberg, 2005, pp. 79-91.; J.P. Guédon, N. Normand, The Mojette transform: the first ten years, in discrete geometry for computer imagery, in: Lecture Notes in Computer Science, vol. 3429/2005, Springer, Berlin, Heidelberg, 2005, pp. 79-91.
[16] Beylkin, G., Discrete Radon transform, IEEE Trans. Acoust. Speech Signal Process., 35, 162-172 (1987)
[17] Matus, F.; Flusser, J., Image representation via a finite Radon transform, IEEE Trans. Pattern Anal. Mach. Intell., 15, 996-1106 (1993)
[18] Svalbe, I.; van der Spek, D., Reconstruction of tomographic images using analog projections and the digital Radon transform, Linear Algebra Appl., 39, 125-145 (2001) · Zbl 0990.65146
[19] A. Kingston, I. Svalbe, Mapping between digital and continuous projections via the discrete Radon transform in Fourier space, in: Digital Imaging Computing: Techniques and Applications, Sydney, Australia, 2003, pp. 263-272.; A. Kingston, I. Svalbe, Mapping between digital and continuous projections via the discrete Radon transform in Fourier space, in: Digital Imaging Computing: Techniques and Applications, Sydney, Australia, 2003, pp. 263-272.
[20] Adamchik, V., On Stirling number and Euler sums, J. Comput. Appl. Math., 79, 119-130 (1997) · Zbl 0877.39001
[21] Shepp, L. A.; Vardi, Y., Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag., 1, 113-122 (1982)
[22] Ardekani, B. A.; Braun, M.; Hutton, B. F., Minimum cross-entropy reconstruction of PET images using prior anatomical information, Phys. Med. Biol., 41, 2497-2517 (1996)
[23] Anderson, A. H.; Kak, A. C., Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm, Ultrason. Imag., 6, 81-94 (1984)
[24] Teh, C. H.; Chin, R. T., On image analysis by the method of moments, IEEE Trans. Pattern Anal. Mach. Intell., 10, 496-513 (1988) · Zbl 0709.94543
[25] Farquhar, T. H.; Chatziioannou, A.; Chinn, G.; Dahlbom, M.; Hoffman, E. J., An investigation of filter choice for filtered back-projection reconstruction in PET, IEEE Trans. Nucl. Sci., 45, 1133-1137 (1998)
[26] Schaeffter, T.; Grass, M.; Proksa, R., Real-time adaptive filtering for projection reconstruction MR fluoroscopy, IEEE Trans. Med. Imag., 22, 75-81 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.