×

Differential mixed variational inequalities in finite dimensional spaces. (English) Zbl 1186.49006

Summary: We introduce and study a class of differential mixed variational inequalities in finite dimensional Euclidean spaces. Under various conditions, we obtain linear growth and bounded linear growth of the solution set for the mixed variational inequalities. Moreover, we present some conclusions which enrich the literature on the mixed variational inequalities and generalize the corresponding results of [J.-H. Pang and D. E. Stewart, Math. Program. 113, No. 2 (A), 345–424 (2008; Zbl 1139.58011)]. In particular we prove existence theorems for weak solutions of a differential mixed variational inequality in the weak sense of Carathéodory by using a result on differential inclusions involving an upper semicontinuous set-valued map with closed convex values. Also by employing the results from differential inclusions we establish a convergence result on Euler time-dependent procedure for solving initial-value differential mixed variational inequalities.

MSC:

49J40 Variational inequalities
49J15 Existence theories for optimal control problems involving ordinary differential equations
34A60 Ordinary differential inclusions
47J20 Variational and other types of inequalities involving nonlinear operators (general)
58E35 Variational inequalities (global problems) in infinite-dimensional spaces

Citations:

Zbl 1139.58011
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin, J. P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag: Springer-Verlag New York
[2] Clarke, F. H.; Ledyaev, Y. S.; Stern, R. J.; Wolenski, P. R., Nonsmooth Analysis and Control Theory (1998), Springer-Verlag: Springer-Verlag New York · Zbl 1047.49500
[3] Mordukhovich, B. S., Optimal control of evolution inclusions, Nonlinear Anal., 63, 775-784 (2005) · Zbl 1153.49312
[4] Pang, J. S.; Stewart, D., Differential variational inequalities, Math. Program. Ser. A, 113, 345-424 (2008) · Zbl 1139.58011
[5] Lescarret, C., Cas d’addition des applications monotones maximales dans un espace de Hilbert, C. R. Acad. Sci. Paris, 261, 1160-1163 (1965), (in French) · Zbl 0138.08204
[6] Browder, F. E., On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Natl. Acad. Sci. USA, 56, 419-425 (1966) · Zbl 0143.36902
[7] Duvaut, G.; Lions, J.-L., (Les Inéquations en Mécanique et en Physique. Les Inéquations en Mécanique et en Physique, Travaux et Recherches Mathématiques, vol. 21 (1972), Dunod: Dunod Paris), (in French) · Zbl 0298.73001
[8] Konnov, I. V.; Volotskaya, E. O., Mixed variational inequalities and economic equilibrium problems, J. Appl. Math., 2, 289-314 (2002) · Zbl 1029.47043
[9] Huang, N. J.; Li, J.; O’Regan, D., Generalized \(f\)-complementarity problems in Banach spaces, Nonlinear Anal. TMA, 68, 3828-3840 (2008) · Zbl 1191.90082
[10] Camlibel, M. K.; Pang, J. S.; Shen, J. L., Lyapunov stability of complementarity and extended systems, SIAM J. Optim., 17, 1056-1101 (2006) · Zbl 1124.93042
[11] Heemels, W. P.M. H.; Schumacher, J. M.; Weiland, S., Linear complementarity systems, SIAM J. Appl. Math., 60, 1234-1269 (2000) · Zbl 0954.34007
[12] Shen, J. L.; Pang, J. S., Linear complementarity systems: Zeno states, SIAM J. Control Optim., 44, 1040-1066 (2005) · Zbl 1092.90052
[13] Han, L. S.; Pang, J. S., Non-zenoness of a class of differential quasi-variational inequalities, Math. Program. Ser. A, 121, 171-199 (2010) · Zbl 1188.34011
[14] Pang, J. S.; Shen, J., Strongly regular differential variational systems, IEEE Trans. Automat. Control, 52, 242-255 (2007) · Zbl 1366.93271
[15] Stewart, D. E., Uniqueness for solutions of differential complementarity problems, Math. Program. Ser. A, 118, 327-345 (2009) · Zbl 1159.90492
[16] Acary, V.; Brogliato, B.; Goeleven, D., Higher order Moreau’s sweeping process: Mathematical formulation and numerical simulation, Math. Program. Ser. A, 113, 133-217 (2008) · Zbl 1148.93003
[17] Gavrea, B. I.; Anitescu, M.; Potra, F. A., Convergence of a class of semi-implicit time-stepping schemes for nonsmooth rigid multibody dynamics, SIAM J. Optim., 19, 969-1001 (2008) · Zbl 1162.70003
[18] Ekeland, I.; Témam, R., Convex Analysis and Variational Problems (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadephia · Zbl 0939.49002
[19] Hokkanen, V. M.; Moroşanu, G., Functional Methods in Differential Equations (2002), Chapman Hall/CRC · Zbl 1032.35003
[20] Facchinei, F.; Pang, J. S., Finite-dimensional Variational Inequalities and Complementarity Problems (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1062.90002
[21] Deimling, K., Multivalued Differential Equations (1992), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0760.34002
[22] Filippov, A. F., On certain questions in the theory of optimal control, SIAM J. Control, 1, 76-84 (1962) · Zbl 0139.05102
[23] Lions, J. L., Quelques Méthodes de Résolution des Problemès aux Limites Non Linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[24] Dontchev, A.; Lempio, F., Difference methods for differential inclusion: A survey, SIAM Rev., 34, 263-294 (1992) · Zbl 0757.34018
[25] Serfaty, S., Functional Analysis Notes Fall (2004), Yevgeny Vilensky: Yevgeny Vilensky New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.