Language:   Search:   Contact
Zentralblatt MATH has released its new interface!
For an improved author identification, see the new author database of ZBMATH.

Query:
Fill in the form and click »Search«...
Format:
Display: entries per page entries
Zbl 1186.39010
Chatzarakis, G.E.; Philos, Ch.G.; Stavroulakis, I.P.
An oscillation criterion for linear difference equations with general delay argument.
(English)
[J] Port. Math. (N.S.) 66, No. 4, 513-533 (2009). ISSN 0032-5155; ISSN 1662-2758/e

Consider the delay difference equation $$x(n+1)-x(n)+p(n)x(\tau (n))=0,\tag*$$ where $\{p(n)\}_{n\geq 0}$ is a sequence of integers such that $\tau (n)\leq n-1$ for all $n\geq 0$ and $\lim_{n\to \infty}\tau (n)=\infty$. The authors establish the following sufficient condition for the oscillation of all solutions of ($*$): Theorem. Assume that the sequence $\{\tau (n)\}_{n\geq 0}$ is increasing, $0<\alpha \leq -1+\sqrt{2}$, where $\alpha =\lim \inf_{n\to \infty}\sum_{j=\tau (n)}^{n-1}p(j)$. If $\lim \sup_{n\to \infty}\sum_{j=\tau (n)}^{n}p(j)>1-\frac{1}{2}(1-\alpha -\sqrt{1-2\alpha -\alpha ^{2}})$, then all solutions of ($*$) are oscillatory.
[Fozi Dannan (Damascus)]
MSC 2000:
*39A21
39A06

Keywords: oscillatory solution; nonoscillatory solution; linear difference equations; delay difference equation

Highlights
Master Server

### Zentralblatt MATH Berlin [Germany]

© FIZ Karlsruhe GmbH

Zentralblatt MATH master server is maintained by the Editorial Office in Berlin, Section Mathematics and Computer Science of FIZ Karlsruhe and is updated daily.

Other Mirror Sites

Copyright © 2013 Zentralblatt MATH | European Mathematical Society | FIZ Karlsruhe | Heidelberg Academy of Sciences