×

Analysis and control of an SEIR epidemic system with nonlinear transmission rate. (English) Zbl 1185.93101

Summary: In this paper, the dynamical behaviors of an SEIR epidemic system governed by differential and algebraic equations with seasonal forcing in transmission rate are studied. The cases of only one varying parameter, two varying parameters and three varying parameters are considered to analyze the dynamical behaviors of the system. For the case of one varying parameter, the periodic, chaotic and hyperchaotic dynamical behaviors are investigated via the bifurcation diagrams, Lyapunov exponent spectrum diagram and Poincare section. For the cases of two and three varying parameters, a Lyapunov diagram is applied. A tracking controller is designed to eliminate the hyperchaotic dynamical behavior of the system, such that the disease gradually disappears. In particular, the stability and bifurcation of the system for the case which is the degree of seasonality \(\beta _{1}=0\) are considered. Then taking isolation control, the aim of elimination of the disease can be reached. Finally, numerical simulations are given to illustrate the validity of the proposed results.

MSC:

93C95 Application models in control theory
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Fan, M.; Michael, Y. L.; Wang, K., Global stability of an SEIS epidemic model with recruitment and a varying total population size, Mathematical Biosciences, 170, 199-208 (2001) · Zbl 1005.92030
[2] Chen, L. S.; Chen, J., Nonlinear Biologic Dynamic Systems (1993), Science Press: Science Press Beijing
[3] Li, X. Z.; Gupur, G.; Zhu, G. T., Threshold and stability results for an age-structured SEIR epidemic model, Computers & Mathematics with Applications, 42, 883-907 (2001) · Zbl 0985.35097
[4] May, R. M.; Oster, G. F., Bifurcation and dynamic complexity in simple ecological models, American Naturalist, 110, 573-599 (1976)
[5] Zeng, G. Z.; Chen, L. S.; Sun, L. H., Complexity of an SIRS epidemic dynamics model with impulsive vaccination control, Chaos Solitons & Fractals, 26, 495-505 (2005) · Zbl 1065.92050
[6] Lu, Z. H.; Liu, X. N.; Chen, L. S., Hopf bifurcation of nonlinear incidence rates SIR epidemiological models with stage structure, Communications in Nonlinear Science & Numerical Simulation, 6, 205-209 (2001) · Zbl 1009.34065
[7] Ghoshal, G.; Sander, L. M.; Sokolov, I. M., SIS epidemics with household structure: the self-consistent field method, Mathematical Biosciences, 190, 71-85 (2004) · Zbl 1048.92029
[8] Hilker, F. M.; Michel, L.; Petrovskii, S. V.; Malchow, H., A diffusive SI model with Allee effect and application to FIV, Mathematical Biosciences, 206, 61-80 (2007) · Zbl 1124.92044
[9] Greenhalgh, D.; Khan, Q. J.A.; Lewis, F. I., Hopf bifurcation in two SIRS density dependent epidemic models, Mathematical and Computer Modelling, 39, 1261-1283 (2004) · Zbl 1065.92042
[10] Glendinning, P.; Perry, L. P., Melnikov analysis of chaos in a simple epidemiological model, Journal of Mathematical Biology, 35, 359-373 (1997) · Zbl 0867.92021
[11] Michael, Y. L.; Graef, J. R.; Wang, L. C.; Karsai, J., Global dynamics of an SEIR model with varying total population size, Mathematical Biosciences, 160, 191-213 (1999) · Zbl 0974.92029
[12] Kuznetsov, Y. A.; Piccardi, C., Bifurcation analysis of periodic SEIR and SIR epidemic models, Mathematical Biosciences, 32, 109-121 (1994) · Zbl 0786.92022
[13] Olsen, L. F.; Schaffer, W. M., Chaos versus periodicity: alternative hypotheses for childhood epidemics, Science, 249, 499-504 (1990)
[14] Sun, C. J.; Lin, Y. P.; Tang, S. P., Global stability for an special SEIR epidemic model with nonlinear incidence rates, Chaos Solitons & Fractals, 33, 290-297 (2007) · Zbl 1152.34357
[15] Xu, W. B.; Liu, H. L.; Yu, J. Y.; Zhu, G. T., Stability results for an age-structured Seir Epidemic model, Journal of Systems Science and Information, 3, 635-642 (2005)
[16] Liu, W. M.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of Mathematical Biology, 25, 359-380 (1987) · Zbl 0621.92014
[17] Greenhalgh, D., Hopf bifurcation in epidemic models with a latent period and non-permanent immunity, Mathematical and Computer Modelling, 25, 85-107 (1997) · Zbl 0877.92023
[18] Cooke, K. L.; Driessche, P. V., Analysis of an SEIRS epidemic model with two delays, Journal of Mathematical Biology, 35, 240-260 (1996) · Zbl 0865.92019
[19] Venkatasubramanian, V.; Schattler, H.; Zaborszky, J., Analysis of local bifurcation mechanisms in large differential-algebraic systems such as the power system, Proceedings of the 32nd Conference on Decision and Control, 4, 3727-3733 (1993)
[20] Rosehart, W. D.; Canizares, C. A., Bifurcation analysis of various power system models, Electrical Power and Energy Systems, 21, 171-182 (1999)
[21] Zhang, J. S., Economy Cybernetics of Singular Systems (1990), Qing Hua University press: Qing Hua University press Beijing
[22] Dai, L., Singular Control Systems (1998), Springer-Verlag: Springer-Verlag Heidelberg, New York
[23] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115, 700-721 (1927) · JFM 53.0517.01
[24] Kamo, M.; Sasaki, A., The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model, Physica D, 165, 228-241 (2002) · Zbl 0993.92030
[25] Broer, H.; Naudot, V.; Roussarie, R.; Saleh, K., Dynamics of a predator-prey model with non- monotonic response function, Discrete and Continuous Dynamical Systems-Series A, 18, 221-251 (2007) · Zbl 1129.92061
[26] Zhang, Y.; Zhang, Q. L.; Zhao, L. C.; Liu, P. Y., Tracking control of chaos in singular biological economy systems, Journal of Northeasten University, 28, 157-164 (2007) · Zbl 1174.92379
[27] Zhang, Y.; Zhang, Q. L., Chaotic control based on descriptor bioeconomic systems, Control and Decision, 22, 445-452 (2007)
[28] Jyi, M.; Chen, C. L.; Chen, C. K., Sliding mode control of hyperchaos in Rossler systems, Chaos Solitons & Fractals, 14, 1465-1476 (2002) · Zbl 1037.93507
[29] Jia, Q., Hyperchaos generated from the Lorenz chaotic system and its control, Physics Letters A, 366, 217-222 (2007) · Zbl 1203.93086
[30] Yan, Z. Y.; Yu, D., Hyperchaos synchronization and control on a new hyperchaotic attractor, Chaos Solitons & Fractals, 35, 333-345 (2008) · Zbl 1132.93042
[31] Yau, H. T.; Yan, J. J., Robust controlling hyperchaos of the Rossler system subject to input nonlinearities by using sliding mode control, Chaos Solitons & Fractals, 33, 1767-1776 (2007) · Zbl 1136.93438
[32] Jang, M. J.; Chen, C. L.; Chen, C. K., Sliding mode control of hyperchaos in Rossler systems, Chaos, Solitons & Fractals, 14, 1465-1476 (2002) · Zbl 1037.93507
[33] Rafikov, M.; Balthazar, J. M., On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Communications in Nonlinear Science and Numerical Simulation, 13, 1246-1255 (2008) · Zbl 1221.93230
[34] Zhou, X. B.; Wu, Y.; Li, Y.; Xue, H. Q., Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters, Applied Mathematics and Computation, 203, 80-85 (2008) · Zbl 1155.37026
[35] Zhang, H.; Ma, X. K.; Li, M.; Zou, J. L., Controlling and tracking hyperchaotic Rossler system via active backstepping design, Chaos, Solitons & Fractals, 26, 353-361 (2005) · Zbl 1153.93381
[36] Wang, J.; Chen, C., Nonlinear control of differential algebraic model in power systems, Proceedings of the CSEE, 21, 15-18 (2001)
[37] Broer, H.; Simo, C.; Vitolo, R., Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’, Physica D, 237, 1773-1799 (2008) · Zbl 1165.37017
[38] Broer, H.; Simo, C.; Vitolo, R., The Hopf-Saddle-Node bifurcation for fixed points of 3D- diffeomorphisms: The Arnol’d resonance web, The Bulletin of The Belgian Mathematical Society-Simon Stevin, 15, 769-787 (2008) · Zbl 1154.37319
[39] Isidori, A., Nonlinear Control System (1985), Springer-Verlag: Springer-Verlag Heidelberg, Berlin · Zbl 0569.93034
[40] Guckenheimer, J.; Holmes, P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0515.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.